Color Centers Enabled by Direct Femto-Second Laser Writing in Wide Bandgap Semiconductors
Abstract
1. Introduction
2. Light–Matter Interaction
3. Materials and Methods
3.1. Laser Inscription
3.2. Photoluminescence Mapping
4. Results and Discussion
4.1. Laser Writing at 515 nm
4.1.1. High Purity Semi-Insulating 4H-SiC: Confocal Maps
4.1.2. n-Type 4H-SiC: Confocal Maps
4.1.3. PL from High-Purity Semi-Insulating 4H-SiC
4.2. Laser Writing at 1030 nm
4.2.1. GaN
4.2.2. Semi-Insulating Unintentionally Doped 4H-SiC
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Vanagas, E.; Kudryashov, I.; Tuzhilin, D.; Juodkazis, S.; Matsuo, S.; Misawa, H. Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses. Appl. Phys. Lett. 2003, 82, 2901–2903. [Google Scholar] [CrossRef]
- Watanabe, M.; Sun, H.; Juodkazis, S.; Takahashi, T.; Matsuo, S.; Suzuki, Y.; Nishii, J.; Misawa, H. Three-Dimensional Optical Data Storage in Vitreous Silica. Jpn. J. Appl. Phys. 1998, 37, L1527–L1530. [Google Scholar] [CrossRef]
- Juodkazis, S.; Nishimura, K.; Misawa, H.; Ebisui, T.; Waki, R.; Matsuo, S.; Okada, T. Control over the Crystalline State of Sapphire. Adv. Mater. 2006, 18, 1361–1364. [Google Scholar] [CrossRef]
- Juodkazis, S.; Nishimura, K.; Misawa, H. In-bulk and surface structuring of sapphire by femtosecond pulses. Appl. Surf. Sci. 2007, 253, 6539–6544. [Google Scholar] [CrossRef]
- Buividas, R.; Rekštytė, S.; Malinauskas, M.; Juodkazis, S. Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses. Opt. Mater. Express 2013, 3, 1674–1686. [Google Scholar] [CrossRef]
- Li, Z.-Z.; Wang, L.; Fan, H.; Yu, Y.-H.; Chen, Q.-D.; Juodkazis, S.; Sun, H.-B. O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci. Appl. 2020, 9, 41. [Google Scholar] [CrossRef]
- Malinauskas, M.; Farsari, M.; Piskarskas, A.; Juodkazis, S. Ultrafast laser nanostructuring of photopolymers: A decade of advances. Phys. Rep. 2013, 533, 1–31. [Google Scholar] [CrossRef]
- Jonušauskas, L.; Gailevičius, D.; Rekštytė, S.; Baldacchini, T.; Juodkazis, S.; Malinauskas, M. Mesoscale laser 3D printing. Opt. Express 2019, 27, 15205–15221. [Google Scholar] [CrossRef]
- Chen, Y.C.; Salter, P.S.; Knauer, S.; Weng, L.; Frangeskou, A.C.; Stephen, C.J.; Ishmael, S.N.; Dolan, P.R.; Johnson, S.; Green, B.L.; et al. Laser writing of coherent colour centres in diamond. Nat. Photonics 2016, 11, 77. [Google Scholar] [CrossRef]
- Rong, Y.; Cheng, K.; Ju, Z.; Pan, C.; Ma, Q.; Liu, S.; Shen, S.; Wu, B.; Jia, T. Bright near-surface silicon vacancy centers in diamond fabricated by femtosecond laser ablation. Opt. Lett. 2019, 44, 3793–3796. [Google Scholar] [CrossRef] [PubMed]
- Sotillo, B.; Bharadwaj, V.; Hadden, J.P.; Rampini, S.; Chiappini, A.; Fernandez, T.T.; Armellini, C.; Serpengüzel, A.; Ferrari, M.; Barclay, P.E.; et al. Visible to Infrared Diamond Photonics Enabled by Focused Femtosecond Laser Pulses. Micromachines 2017, 8, 60. [Google Scholar] [CrossRef]
- Barbiero, M.; Castelletto, S.; Gu, M. Multi-focal laser fabrication of nitrogen vacancy centres in a bulk diamond. OSA Contin. 2020, 3, 3416–3423. [Google Scholar] [CrossRef]
- Chen, Y.C.; Salter, P.S.; Niethammer, M.; Widmann, M.; Kaiser, F.; Nagy, R.; Morioka, N.; Babin, C.; Erlekampf, J.; Berwian’, P.; et al. Laser writing of scalable single color centers in silicon carbide. Nano Lett. 2019, 19, 2377. [Google Scholar] [CrossRef] [PubMed]
- Castelletto, S.; Almutairi, A.; Kumagai, K.; Katkus, T.; Hayasaki, Y.; Johnson, B.; Juodkazis, S.J. Photoluminescence in hexagonal silicon carbide by direct femtosecond laser writing. Opt. Lett. 2018, 43, 6077–6080. [Google Scholar] [CrossRef]
- Buividas, R.; Aharonovich, I.; Seniutinas, G.; Wang, X.; Rapp, L.; Rode, A.V.; Taniguchi, T.; Juodkazis, S. Photoluminescence from voids created by femtosecond-laser pulses inside cubic-BN. Opt. Lett. 2015, 40, 5711–5713. [Google Scholar] [CrossRef]
- Hou, S.; Birowosuto, M.D.; Umar, S.; Anicet, M.A.; Tay, R.Y.; Coquet, P.; Tay, B.K.; Wang, H.; Teo, E.H.T. Localized emission from laser-irradiated defects in 2D hexagonal boron nitride. 2D Mater. 2017, 5, 015010. [Google Scholar] [CrossRef]
- Umar, S.; Birowosuto, D.; Hou, S.; Maurice, A.; Tay, B.K.; Teo, E.; Tchernycheva, M.; Gogneau, N.; Wang, H. Light emission from localised point defects induced in GaN crystal by femtosecond-pulsed laser. Opt. Mater. Express 2018, 8, 2703. [Google Scholar] [CrossRef]
- Castelletto, S.; Boretti, A. Silicon carbide color centers for quantum applications. J. Phys. Photonics 2020, 2, 022001. [Google Scholar] [CrossRef]
- Lohrmann, A.; Johnson, B.C.; McCallum, J.C.; Castelletto, S. A review on single photon sources in silicon carbide. Rep. Prog. Phys. 2017, 80, 034502. [Google Scholar] [CrossRef]
- Aharonovich, I.; Castelletto, S.; Simpson, D.A.; Su, C.H.; Greentree, A.D.; Prawer, S. Diamond-based single-photon emitters. Rep. Prog. Phys. 2011, 74, 076501. [Google Scholar] [CrossRef]
- Castelletto, S.; Inam, F.A.; Sato, S.-I.; Boretti, A. Hexagonal boron nitride: A review of the emerging material platform for single-photon sources and the spin–photon interface. Beilstein J. Nanotechnol. 2020, 11, 740–769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Cheng, Y.; Chou, J.-P.; Gali, A. Material platforms for defect qubits and single-photon emitters. Appl. Phys. Rev. 2020, 7, 031308. [Google Scholar] [CrossRef]
- Awschalom, D.D.; Hanson, R.; Wrachtrup, J.; Zhou, B.B. Quantum technologies with optically interfaced solid-state spins. Nat. Photonics 2018, 12, 516. [Google Scholar] [CrossRef]
- Seo, H.; Falk, A.L.; Klimov, P.V.; Miao, K.C.; Galli, G.; Awschalom, D.D. Quantum decoherence dynamics of divacancy spins in silicon carbide. Nat. Commun. 2016, 7, 12935. [Google Scholar] [CrossRef]
- Castelletto, S.; Johnson, B.C.; Boretti, A. Quantum Effects in Silicon Carbide Hold Promise for Novel Integrated Devices and Sensors. Adv. Opt. Mater. 2013, 1, 609–625. [Google Scholar] [CrossRef]
- Lenzini, F.; Gruhler, N.; Walter, N.; Pernice, W.H.P. Diamond as a Platform for Integrated Quantum Photonics. Adv. Quantum Technol. 2018, 1, 1800061. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Griffiths, B.; Weng, L.; Nicley, S.S.; Ishmael, S.N.; Lekhai, Y.; Johnson, S.; Stephen, C.J.; Green, B.L.; Morley, G.W.; et al. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield. Optica 2019, 6, 662–667. [Google Scholar] [CrossRef]
- Wang, S.; Ji, L.; Li, L.; Wu, Y.; Zhang, Y.; Lin, Z. Selective 6H-SiC White Light Emission by Picosecond Laser Direct Writing. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Zhang, B.; He, S.; Yang, Q.; Liu, H.; Wang, L.; Chen, F. Femtosecond laser modification of 6H–SiC crystals for waveguide devices. Appl. Phys. Lett. 2020, 116, 111903. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Morkoç, H. Luminescence properties of defects in GaN. J. Appl. Phys. 2005, 97, 061301. [Google Scholar] [CrossRef]
- Juodkazis, S.; Eliseev, P.G.; Watanabe, M.; Sun, H.-B.; Matsuo, S.; Sugahara, T.; Sakai, S.; Misawa, H. Annealing of GaN-InGaN Multi Quantum Wells: Correlation between the Bandgap and Yellow Photoluminescence. Jpn. J. Appl. Phys. 2000, 39, 393–396. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Usikov, A.; Helava, H.; Makarov, Y. Fine structure of the red luminescence band in undoped GaN. Appl. Phys. Lett. 2014, 104, 032103. [Google Scholar] [CrossRef]
- Kudrius, T.; Šlekys, G.; Juodkazis, S. Surface-texturing of sapphire by femtosecond laser pulses for photonic applications. J. Phys. D Appl. Phys. 2010, 43, 145501. [Google Scholar] [CrossRef]
- Schaffer, C.B.; Brodeur, A.; Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 2001, 12, 1784–1794. [Google Scholar] [CrossRef]
- Keldysh, L. Ionization in the field of a strong electromagnetic wave. J. Sov. Phys. JETP 1965, 20, 1307–1314. [Google Scholar]
- Marcinkevičius, A.; Mizeikis, V.; Juodkazis, S.; Matsuo, S.; Misawa, H. Effect of refractive index-mismatch on laser microfabrication in silica glass. Appl. Phys. A 2003, 76, 257–260. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Sciortino, S.; Obreshkov, B.; Apostolova, T.; Corsi, C.; Bellini, M.; Berdermann, E.; Schmidt, C.J. Photoionization of monocrystalline CVD diamond irradiated with ultrashort intense laser pulse. Phys. Rev. B 2016, 93, 085128. [Google Scholar] [CrossRef]
- Rothschild, M.; Arnone, C.; Ehrlich, D.J. Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 1986, 4, 310–314. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, G.; Song, M.; Ci, X.; Wu, B.; Wu, E.; Zeng, H. Fabrication of nitrogen vacancy color centers by femtosecond pulse laser illumination. Opt. Express 2013, 21, 12843–12848. [Google Scholar] [CrossRef]
- Pimenov, S.M.; Khomich, A.A.; Neuenschwander, B.; Jäggi, B.; Romano, V. Picosecond-laser bulk modification induced enhancement of nitrogen-vacancy luminescence in diamond. J. Opt. Soc. Am. B 2016, 33, B49–B55. [Google Scholar] [CrossRef]
- Kononenko, V.V.; Vlasov, I.I.; Gololobov, V.M.; Kononenko, T.V.; Semenov, T.A.; Khomich, A.A.; Shershulin, V.A.; Krivobok, V.S.; Konov, V.I. Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique. Appl. Phys. Lett. 2017, 111, 081101. [Google Scholar] [CrossRef]
- Sörman, E.; Son, N.T.; Chen, W.M.; Kordina, O.; Hallin, C.; Janzén, E. Silicon vacancy related defect in 4H and 6H SiC. Phys. Rev. B 2000, 61, 2613–2620. [Google Scholar] [CrossRef]
- Fuchs, F.; Stender, B.; Trupke, M.; Simin, D.; Pflaum, J.; Dyakonov, V.; Astakhov, G.V. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat. Commun. 2015, 6, 7578. [Google Scholar] [CrossRef]
- Rühl, M.O.C.; Götzinger, S.; Krieger, M.; Weber, H.B. Controlled generation of intrinsic near-infrared color centers in 4H-SiC via proton irradiation and annealing. Appl. Phys. Lett. 2018, 113, 122102. [Google Scholar] [CrossRef]
- Ayedh, H.M.; Bobal, V.; Nipoti, R.; Hallén, A.; Svensson, B.G. Formation and Annihilation of Carbon Vacancies in 4H-SiC. Mater. Sci. Forum 2016, 858, 331–336. [Google Scholar] [CrossRef]
- Ohshima, T.; Satoh, T.; Kraus, H.; Astakhov, G.V.; Dyakonov, V.; Baranov, P.G. Creation of silicon vacancy in silicon carbide by proton beam writing toward quantum sensing applications. J. Phys. D Appl. Phys. 2018, 51, 333002. [Google Scholar] [CrossRef]
- Kraus, H.; Simin, D.; Kasper, C.; Suda, Y.; Kawabata, S.; Kada, W.; Honda, T.; Hijikata, Y.; Ohshima, T.; Dyakonov, V.; et al. Three-dimensional proton beam writing of optically active coherent vacancy spins in silicon carbide. Nano Lett. 2017, 17, 2865. [Google Scholar] [CrossRef]
- Castelletto, S.; Johnson, B.C.; Ivády, V.; Stavrias, N.; Umeda, T.; Gali, A.; Ohshima, T. A silicon carbide room-temperature single-photon source. Nat. Mater. 2014, 13, 151–156. [Google Scholar] [CrossRef]
- Son, N.T.; Carlsson, P.; ul Hassan, J.; Janzén, E.; Umeda, T.; Isoya, J.; Gali, A.; Bockstedte, M.; Morishita, N.; Ohshima, T.; et al. Divacancy in 4H-SiC. Phys. Rev. Lett. 2006, 96, 055501. [Google Scholar] [CrossRef]
- Degen, C.L.; Reinhard, F.; Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 2017, 89, 035002. [Google Scholar] [CrossRef]
- Castelletto, S.; Katkus, T.; Juodkazis, S. Laser Writing of Color Centers in Silicon Carbide; SPIE Micro Nano Materials, Devices, and Applications: Bellingham, WA, USA, 2019; Volume 11201, p. 1120112. [Google Scholar]
- Son, N.T.; Stenberg, P.; Jokubavicius, V.; Abe, H.; Ohshima, T.; Hassan, J.U.; Ivanov, I.G. Energy levels and charge state control of the carbon antisite-vacancy defect in 4H-SiC. Appl. Phys. Lett. 2019, 114, 212105. [Google Scholar] [CrossRef]
- Christle, D.J.; Falk, A.L.; Andrich, P.; Klimov, P.V.; Hassan, J.U.; Son, N.T.; Janzén, E.; Ohshima, T.; Awschalom, D.D. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 2015, 14, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-F.; Liu, Z.-H.; Yan, F.-F.; Li, Q.; Yang, X.-G.; Guo, L.; Zhou, X.; Huang, W.; Xu, J.-S.; Li, C.-F.; et al. Experimental Optical Properties of Single Nitrogen Vacancy Centers in Silicon Carbide at Room Temperature. ACS Photonics 2020, 7, 1611–1616. [Google Scholar] [CrossRef]
- Wang, J.-F.; Yan, F.-F.; Li, Q.; Liu, Z.-H.; Liu, H.; Guo, G.-P.; Guo, L.-P.; Zhou, X.; Cui, J.-M.; Wang, J.; et al. Coherent Control of Nitrogen-Vacancy Center Spins in Silicon Carbide at Room Temperature. Phys. Rev. Lett. 2020, 124, 223601. [Google Scholar] [CrossRef] [PubMed]
- Atatüre, M.; Englund, D.; Vamivakas, N.; Lee, S.-Y.; Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 2018, 3, 38–51. [Google Scholar] [CrossRef]
nJ Per Pulse | Material | Color Centers Identified and Depth (μm) | Annealing | |
---|---|---|---|---|
nm | ||||
515 | 13 ÷ 445 | 4H-SiC | VSi 665 nm unknown (2, 4) | Before fabrication at 1000 °C |
HPSI | ||||
N < 1014 cm−3 | ||||
515 | 13 ÷ 445 | 4H-SiC | Unknown (2, 4) | Not performed |
n-type | ||||
N 1019 cm−3 | ||||
1030 | 4 ÷ 230 | GaN | RL center (0) | Not performed |
Thin film | ||||
unintentionally | ||||
n-doped | ||||
1030 | 4 ÷ 230 | 4H-SiC | VSi (0, 5, 10) | 400, 500, and 600 °C |
Unintentionally doped | ||||
N 3–6 × 1015 cm−3 |
Material | Color Centers Identified and Depth | Reference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
nm | TW/cm2 | nJ | nm | fs | kHz | nJ Per Pulse | (μm) | |||
790 | 13.4 | 12.9 | 350 | 1.4 | 250 | 1 | 6.7 ÷ 89.9 | 4H-SiC 1 | VSi 5 | [14] |
Intrinsic | −40 | |||||||||
1030 | 17.7 | 68 | 729 | 0.9 | 230 | 200 | 29 ÷ 230 | 4H-SiC 2 | VSi, VcVSi | [15,52] |
intrinsic | (0, 5, 10) | |||||||||
515 | 70.9 | 68 | 364 | 0.9 | 230 | 200 | 13 ÷ 445 | 4H-SiC | VSi | This work |
HPSI | (2, 4) | |||||||||
515 | 70.9 | 68 | 364 | 0.9 | 230 | 200 | 13 ÷ 445 | 4H-SiC | Unknown | This work |
n-type 3 | (2, 4) | |||||||||
515 | 57.5 | 22.8 | 234 | 1.4 | 230 | 200 | 9 ÷ 90 | cBN | NV | [16] |
(10, 20) | ||||||||||
1030 | 16.6 | 63.8 | 729 | 0.9 | 230 | 200 | 4 ÷ 230 | GaN | RL center | This work |
Thin film | 0 | |||||||||
800 | 27.6 | 74.4 | 784 | 0.6 | 140 | 80,000 | 1.6 ÷ 5.74 | GaN | RL centers | [18] |
Thin film | 0 | |||||||||
790 | 26.6 | 25.6 | 350 | 1.4 | 250 | 1 | 19.6 ÷ 61.8 | Quantum | NV 5 | [10] |
Diamond 4 | −40 | |||||||||
515 | 62.6 | 31.1 | 262 | 1.25 | 230 | 500 | 10 ÷ 30 | Quantum | NV 5 | [12] |
Diamond | −25 | |||||||||
800 | 25.9 | 67.7 | 1020 | 0.5 | 80 | 250 | 4,000 3 | Type Ib | NV 5 | [40] |
Diamond | (around crater) | |||||||||
800 | 25.9 | 13 | 566 | 0.9 | 50 | 1 | 10,000 3 | Quantum | SiV 5 | [11] |
Diamond | (around crater) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castelletto, S.; Maksimovic, J.; Katkus, T.; Ohshima, T.; Johnson, B.C.; Juodkazis, S. Color Centers Enabled by Direct Femto-Second Laser Writing in Wide Bandgap Semiconductors. Nanomaterials 2021, 11, 72. https://doi.org/10.3390/nano11010072
Castelletto S, Maksimovic J, Katkus T, Ohshima T, Johnson BC, Juodkazis S. Color Centers Enabled by Direct Femto-Second Laser Writing in Wide Bandgap Semiconductors. Nanomaterials. 2021; 11(1):72. https://doi.org/10.3390/nano11010072
Chicago/Turabian StyleCastelletto, Stefania, Jovan Maksimovic, Tomas Katkus, Takeshi Ohshima, Brett C. Johnson, and Saulius Juodkazis. 2021. "Color Centers Enabled by Direct Femto-Second Laser Writing in Wide Bandgap Semiconductors" Nanomaterials 11, no. 1: 72. https://doi.org/10.3390/nano11010072
APA StyleCastelletto, S., Maksimovic, J., Katkus, T., Ohshima, T., Johnson, B. C., & Juodkazis, S. (2021). Color Centers Enabled by Direct Femto-Second Laser Writing in Wide Bandgap Semiconductors. Nanomaterials, 11(1), 72. https://doi.org/10.3390/nano11010072