N, S and Transition-Metal Co-Doped Graphene Nanocomposites as High-Performance Catalyst for Glucose Oxidation in a Direct Glucose Alkaline Fuel Cell
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of rGO-NS
2.3. Preparation rGO-NS-M Catalyst
2.4. Electrodes Preparation and DGAFC Assembly
2.5. Materials Characterization and Electrochemical Analysis
3. Results and Discussion
3.1. Electrochemical Performance of Different Anodes
3.1.1. Catalytic Performance of rGO-NS
3.1.2. Catalytic Performance of rGO-NS-M
3.1.3. The Performance of rGO-NS-M Anode
3.2. DGAFC Performance
3.3. Characterization of rGO-NS-Ni Nanocomposites
3.4. Feasible Mechanism
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Gratzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–323. [Google Scholar] [CrossRef]
- Fan, F.R.; Tang, W.; Wang, Z.L. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. Adv. Mater. 2016, 28, 4283–4305. [Google Scholar] [CrossRef] [PubMed]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Dodds, P.E.; Staffell, L.; Hawkes, A.D.; Li, F.; Grunewald, P.; McDowall, W.; Ekins, P. Hydrogen and fuel cell technologies for heating: A review. Int. J. Hydrogen Energy 2015, 40, 2065–2083. [Google Scholar] [CrossRef] [Green Version]
- Faghri, A.; Li, X.L.; Bahrami, H. Recent advances in passive and semi-passive direct methanol fuel cells. Int. J. Therm. Sci. 2012, 62, 12–18. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Gong, Y.Y.; Wu, D.B.; Li, Z.; Li, Q.; Zheng, L.W.; Chen, W. Palladium-cobalt nanodots anchored on graphene: In-situ synthesis, and application as an anode catalyst for direct formic acid fuel cells. Appl. Surf. Sci. 2019, 469, 305–311. [Google Scholar] [CrossRef]
- Leoneti, A.B.; Aragao-Leoneti, V.; de Oliveira, S.V.W.B. Glycerol as a by-product of biodiesel production in Brazil: Alternatives for the use of unrefined glycerol. Renew. Energy 2012, 45, 138–145. [Google Scholar] [CrossRef]
- Zhang, E.H.; Xie, Y.; Ci, S.Q.; Jia, J.C.; Wen, Z.H. Porous Co3O4 hollow nanododecahedra for nonenzymatic glucose biosensor and biofuel cell. Biosens. Bioelectron. 2016, 81, 46–53. [Google Scholar] [CrossRef]
- Liu, P.; Liu, X.H.; Dong, F.; Lin, Q.X.; Tong, Y.D.; Li, Y.; Zhang, P.P. Electricity generation from banana peels in an alkaline fuel cell with a Cu2O-Cu modified activated carbon cathode. Sci. Total Environ. 2018, 631, 849–856. [Google Scholar] [CrossRef]
- Jiang, T.T.; Yan, L.L.; Meng, Y.Z.; Xiao, M.; Wu, Z.R.; Tsiakaras, P.; Song, S.Q. Glucose electrooxidation in alkaline medium: Performance enhancement of PdAu/C synthesized by NH3 modified pulse microwave assisted polyol method. Appl. Catal. B-Environ. 2015, 162, 275–281. [Google Scholar] [CrossRef]
- Quinson, J.; Inaba, M.; Neumann, S.; Swane, A.A.; Bucher, J.; Simonsen, S.B.; Kuhn, L.T.; Kirkensgaard, J.J.K.; Jensen, K.M.O.; Oezaslan, M.; et al. Investigating Particle Size Effects in Catalysis by Applying a Size-Controlled and Surfactant-Free Synthesis of Colloidal Nanoparticles in Alkaline Ethylene Glycol: Case Study of the Oxygen Reduction Reaction on Pt. Acs Catal. 2020, 10, 2692–2693. [Google Scholar] [CrossRef] [Green Version]
- Lim, B.; Jiang, M.J.; Camargo, P.H.C.; Cho, E.C.; Tao, J.; Lu, X.M.; Zhu, Y.M.; Xia, Y.N. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 2009, 324, 1302–1305. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, E.; Noor, T.; Iqbal, N.; Mehmood, Y.; Ahmed, S.; Mehek, R. Effect of Co-Ni Ratio in Graphene Based Bimetallic Electro-catalyst for Methanol Oxidation. Fuel Cells 2018, 18, 189–194. [Google Scholar] [CrossRef]
- Dong, F.; Liu, X.H.; Irfan, M.; Yang, L.; Li, S.L.; Ding, J.; Li, Y.; Khan, I.U.; Zhang, P.P. Macaroon-like FeCo2O4 modified activated carbon anode for enhancing power generation in direct glucose fuel cell. Int. J. Hydrogen Energy 2019, 44, 8178–8187. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.H.; Wang, X.; Zhang, P.P.; Shi, J.F. Peony petal-like 3D graphene-nickel oxide nanocomposite decorated nickel foam as high-performance electrocatalyst for direct glucose alkaline fuel cell. Int. J. Hydrogen Energy 2017, 42, 29863–29873. [Google Scholar] [CrossRef]
- Wang, T.; Guo, Y.R.; Zhou, Z.X.; Chang, X.H.; Zheng, J.; Li, X.G. Ni-Mo nanocatalysts on N-Doped graphite nanotubes for highly efficient electrochemica hydrogen evolution in acid. ACS Nano 2016, 10, 10397–10403. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.S.; Park, D.; Jeon, S. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media. J. Power Sources 2016, 308, 180–188. [Google Scholar] [CrossRef]
- Soo, L.T.; Loh, K.S.; Mohamad, A.B.; Daud, W.R.W.; Wong, W.Y. An overview of the electrochemical performance of modified graphene used as an electrocatalyst and as a catalyst support in fuel cells. Appl. Catal. A Gen. 2015, 497, 198–210. [Google Scholar] [CrossRef]
- Huang, S.C.; Meng, Y.Y.; Cao, Y.F.; He, S.M.; Li, X.H.; Tong, S.F.; Wu, M.M. N-, O- and P-doped hollow carbons: Metal-free bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Appl. Catal. B-Environ. 2019, 248, 239–248. [Google Scholar] [CrossRef]
- Yang, S.; Kim, J.; Tak, Y.J.; Soon, A.; Lee, H. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions. Angew. Chem. Int. Ed. 2016, 55, 2058–2062. [Google Scholar] [CrossRef]
- He, D.L.; Zhao, W.; Li, P.; Sun, S.; Tan, Q.W.; Han, K.; Liu, L.; Liu, L.; Qu, X.H. Bifunctional biomass-derived N, S dual-doped ladder-like porous carbon for supercapacitor and oxygen reduction reaction. J. Alloys Compd. 2019, 773, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, W.; Nie, Y.; Peng, L.S.; Ding, W.; Chen, S.G.; Li, L.; Wei, Z.D. Construction of a porous nitrogen-doped carbon nanotube with open-ended channels to effectively utilize the active sites for excellent oxygen reduction reaction activity. Chem. Commun. 2017, 53, 11426–11429. [Google Scholar] [CrossRef]
- Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S.Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 2012, 51, 11496–11500. [Google Scholar] [CrossRef] [PubMed]
- Wohlgemuth, S.A.; White, R.J.; Willinger, M.G.; Titirici, M.M.; Antonietti, M. A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chem. 2012, 14, 1515–1523. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.X.; Dong, G.F.; Jin, C.H.; Huang, M.H.; Guan, L.H. Sulfur and nitrogen co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction. Chemsuschem 2013, 6, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.W.; Zhang, M.; Chen, J.; Li, Y.R.; Shi, G.Q. Nitrogen and sulfur codoped graphite foam as a self-supported metal-free electrocatalytic electrode for water oxidation. Adv. Energy Mater. 2016, 6, 1501492. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, W.; Yu, Y.B.; Zhou, Y.L.; Hong, J.M. Catalytic performance and mechanism of graphene electrode doped with S and N heteroatoms for N-(4-hydroxyphenyl) ethanamide electrochemical Check tor degradation. J. Hazard. Mater. 2019, 368, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Pasala, V.; Ramavath, J.N.; He, C.; Ramani, V.K.; Ramanujam, K. N- and P-co-doped graphite felt electrode for improving positive electrode chemistry of the vanadium redox flow battery. ChemistrySelect 2018, 3, 8678–8687. [Google Scholar] [CrossRef]
- Ge, L.P.; Wang, D.; Yang, P.X.; Xu, H.; Xiao, L.H.; Zhang, G.X.; Lu, X.Y.; Duan, Z.Z.; Meng, F.; Zhang, J.Q.; et al. Graphite N-C-P dominated three-dimensional nitrogen and phosphorus co-doped holey graphene foams as high-efficiency electrocatalysts for Zn-air batteries. Nanoscale 2019, 11, 17010–17017. [Google Scholar] [CrossRef]
- Thamer, B.M.; El-Newehy, M.H.; Barakat, N.A.M.; Al-Deyab, S.S.; Kim, H.Y. Preparation of zero-valent Co/N-CNFs as an immobilized thin film onto graphite disc for methanol electrooxidation. Fibers Polym. 2017, 18, 696–705. [Google Scholar] [CrossRef]
- Tong, Y.; Yu, X.W.; Wang, H.Y.; Yao, B.W.; Li, C.; Shi, G.Q. Trace level Co-N doped graphite foams as high-performance self-standing electrocatalytic electrodes for hydrogen and oxygen evolution. ACS Catal. 2018, 8, 4637–4644. [Google Scholar] [CrossRef]
- Xia, X.F.; Lei, W.; Hao, Q.L.; Wang, W.J.; Sun, Y.X.; Wang, X. One-pot synthesis and electrochemical properties of nitrogen-doped graphene decorated with M(OH)(x) (M = FeO, Ni, Co) nanoparticles. Electrochim. Acta 2013, 113, 117–126. [Google Scholar] [CrossRef]
- Yin, X.F.; He, L.M.; Syed-Hassan, S.S.A.; Deng, W.; Ling, P.; Xiong, Y.M.; Hu, X.; Su, S.; Hu, S.; Wang, Y.; et al. One-step preparation of a N-CNTs@Ni foam electrode material with the co-production of H-2 by catalytic reforming of N-containing compound of biomass tar. Fuel 2020, 280, 118601. [Google Scholar] [CrossRef]
- Chen, P.Z.; Zhou, T.P.; Xing, L.L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L.D.; Yan, W.S.; Chu, W.S.; Wu, C.Z.; et al. Atomically Dispersed Iron-Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions. Angew. Chem. Int. Ed. 2017, 56, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Ci, S.Q.; Wen, Z.H.; Mao, S.; Hou, Y.; Cui, S.M.; He, Z.; Chen, J.H. One-pot synthesis of high-performance Co/graphene electrocatalysts for glucose fuel cells free of enzymes and precious metals. Chem. Commun. 2015, 51, 9354–9357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compton, O.C.; Nguyen, S.T. Graphene Oxide, Highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 2010, 6, 711–723. [Google Scholar] [CrossRef]
- Li, Y.F.; Li, M.; Jiang, L.Q.; Lin, L.; Cui, L.L.; He, X.Q. Advanced oxygen reduction reaction catalyst based on nitrogen and sulfur co-doped graphene in alkaline medium. Phys. Chem. Chem. Phys. 2014, 16, 23196–23205. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.H.; Ding, J.; Li, S.L.; Dong, F.; Irfan, M.; Li, Y.; Wang, G.Y.; Du, X.W.; Zhang, P.P. Chlorella-derived porous heteroatom-doped carbons as robust catalysts for oxygen reduction reaction in direct glucose alkaline fuel cell. Int. J. Hydrogen Energy 2019, 44, 2823–2831. [Google Scholar] [CrossRef]
- Wu, R.; Xiao, B.; Gao, Q.; Zheng, Y.R.; Zheng, X.S.; Zhu, J.F.; Gao, M.R.; Yu, S.H. A Janus Nickel Cobalt Phosphide Catalyst for High-Efficiency Neutral-pH Water Splitting. Angew. Chem. Int. Ed. 2018, 57, 15445–15449. [Google Scholar] [CrossRef]
- Feng, Y.Q.; Wang, X.; Huang, J.F.; Dong, P.P.; Ji, J.; Li, J.; Cao, L.Y.; Feng, L.L.; Jin, P.; Wang, C.R. Decorating CoNi layered double hydroxides nanosheet arrays with fullerene quantum dot anchored on Ni foam for efficient electrocatalytic water splitting and urea electrolysis. Chem. Eng. J. 2020, 390, 124–134. [Google Scholar] [CrossRef]
- Gao, M.Y.; Liu, X.H.; Irfan, M.; Shi, J.F.; Wang, X.; Zhang, P.P. Nickle-cobalt composite catalyst-modified activated carbon anode for direct glucose alkaline fuel cell. Int. J. Hydrogen Energy 2018, 43, 1805–1815. [Google Scholar] [CrossRef]
- Lemoine, C.; Dubois, L.; Napporn, T.W.; Servat, K.; Kokoh, K.B. Electrochemical Energy Conversion from Direct Oxidation of Glucose on Active Electrode Materials. Electrocatalysis 2020, 11, 170–179. [Google Scholar] [CrossRef]
- Irfan, M.; Liu, X.H.; Li, S.L.; Khan, I.U.; Li, Y.; Wang, J.; Wang, X.; Du, X.W.; Wang, G.Y.; Zhang, P.P. High-performance glucose fuel cell with bimetallic Ni-Co composite anchored on reduced graphene oxide as anode catalyst. Renew. Energy 2020, 155, 1118–1126. [Google Scholar] [CrossRef]
- Irfan, M.; Khan, I.U.; Wang, J.; Li, Y.; Liu, X.H. 3D porous nanostructured Ni3N-Co3N as a robust electrode material for glucose fuel cell. RSC Adv. 2020, 10, 6444–6451. [Google Scholar] [CrossRef] [Green Version]
- Brouzgou, A.; Gorbova, E.; Wang, Y.; Jing, S.Y.; Seretis, A.; Liang, Z.X.; Tsiakaras, P. Nitrogen-doped 3D hierarchical ordered mesoporous carbon supported palladium electrocatalyst for the simultaneous detection of ascorbic acid, dopamine, and glucose. Ionics 2019, 25, 6061–6070. [Google Scholar] [CrossRef]
- Elkholy, A.E.; Heakal, F.E.; El-Said, W.A. Improving the electrocatalytic performance of Pd nanoparticles supported on indium/tin oxide substrates towards glucose oxidation. Appl. Catal. A Gen. 2019, 580, 28–33. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, L.Z.; Du, A.J.; Gao, G.P.; Chen, J.; Yan, X.C.; Brown, C.L.; Yao, X.D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532–9540. [Google Scholar] [CrossRef] [PubMed]
- Paraknowitsch, J.P.; Zhang, Y.J.; Wienert, B.; Thomas, A. Nitrogen- and phosphorus-co-doped carbons with tunable enhanced surface areas promoted by the doping additives. Chem. Commun. 2013, 49, 1208–1210. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.B.; Zhi, L.J.; Tang, K.; Feng, X.L.; Maier, J.; Mullen, K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 2012, 22, 3634–3640. [Google Scholar] [CrossRef]
- Xia, W.; Tang, J.; Li, J.J.; Zhang, S.H.; Wu, K.C.W.; He, J.P.; Yamauchi, Y. Defect-rich graphene nanomesh produced by thermal exfoliation of metal-organic frameworks for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2019, 58, 13354–13359. [Google Scholar] [CrossRef]
- Duan, X.G.; O’Donnell, K.; Sun, H.Q.; Wang, Y.X.; Wang, S.B. Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions. Small 2015, 11, 3036–3044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Li, Y.X.; Lv, F.; Fan, Q.H.; Zhao, Y.Q.; Zhang, Q.L.; Wang, W.; Cheng, F.Y.; Xi, P.X.; Guo, S.J. NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-Air batteries. Acs Nano 2017, 11, 2275–2283. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Qiao, S.Z. Hierarchically porous nitrogen-doped graphene-NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. Acs Nano 2013, 7, 10190–10196. [Google Scholar] [CrossRef] [PubMed]
Composites | Rs (Ω) | Cad (F) | Rct (Ω) | Cdl (F) | Rd (Ω) | Rt (Ω) |
---|---|---|---|---|---|---|
Bare AC | 1.1860 | 0.0003 | 0.6484 | 3.2390 | 1.5470 | 3.3814 |
rGO-NS-Fe | 0.8645 | 64.2800 | 0.2287 | 0.0020 | 0.1400 | 1.4519 |
rGO-NS-Co | 0.8318 | 19.3900 | 0.2254 | 0.0298 | 0.1041 | 1.3867 |
rGO-NS-Ni | 0.6833 | 67.4400 | 0.2153 | 0.5486 | 0.0445 | 1.1584 |
Anode Catalyst | Maximum Power Density (W/m2) | Glucose (M) | T (°C) | Noble Metal | Compart-Ments | Catalyst Loading | Peak Current Density (mA/cm2) | Reference |
---|---|---|---|---|---|---|---|---|
AuPt/rGO | 11.860 | 0.05 | - | Yes | Two | 0.19 mg/cm2 | - | [42] |
Ni-Co-rGO | 28.807 | 1 | 25 | No | One | 0.15 mg/cm2 | - | [43] |
Ni3N-Co3N | 30.89 | 1 | 25 | No | One | 0.15 mg/cm2 | - | [44] |
Pd/N-3D mesoporous carbon- | - | 0.01 | 36.6 | Yes | - | 0.36 mg/cm2 | 2.5 | [45] |
Pd-Ce2O3/ITO | - | 0.5 | 25 | Yes | - | - | 8.0 | [46] |
rGO-NS-Ni | 48.00 | 3 | 25 | No | One | 0.15 mg/cm2 | - | This work |
rGO-NS-Co | 36.56 | 3 | 25 | No | One | 0.15 mg/cm2 | - | This work |
rGO-NS-Fe | 31.99 | 3 | 25 | No | One | 0.15 mg/cm2 | - | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Ding, J.; Li, J.; Li, Y.; Zong, Y.; Zhang, P.; Wang, Z.; Liu, X. N, S and Transition-Metal Co-Doped Graphene Nanocomposites as High-Performance Catalyst for Glucose Oxidation in a Direct Glucose Alkaline Fuel Cell. Nanomaterials 2021, 11, 202. https://doi.org/10.3390/nano11010202
Dai Y, Ding J, Li J, Li Y, Zong Y, Zhang P, Wang Z, Liu X. N, S and Transition-Metal Co-Doped Graphene Nanocomposites as High-Performance Catalyst for Glucose Oxidation in a Direct Glucose Alkaline Fuel Cell. Nanomaterials. 2021; 11(1):202. https://doi.org/10.3390/nano11010202
Chicago/Turabian StyleDai, Yexin, Jie Ding, Jingyu Li, Yang Li, Yanping Zong, Pingping Zhang, Zhiyun Wang, and Xianhua Liu. 2021. "N, S and Transition-Metal Co-Doped Graphene Nanocomposites as High-Performance Catalyst for Glucose Oxidation in a Direct Glucose Alkaline Fuel Cell" Nanomaterials 11, no. 1: 202. https://doi.org/10.3390/nano11010202
APA StyleDai, Y., Ding, J., Li, J., Li, Y., Zong, Y., Zhang, P., Wang, Z., & Liu, X. (2021). N, S and Transition-Metal Co-Doped Graphene Nanocomposites as High-Performance Catalyst for Glucose Oxidation in a Direct Glucose Alkaline Fuel Cell. Nanomaterials, 11(1), 202. https://doi.org/10.3390/nano11010202