Optical Multistability in the Metal Nanoparticle–Graphene Nanodisk–Quantum Dot Hybrid Systems
Abstract
1. Introduction
2. Theoretical Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MNP | Metal nanoparticle |
GND | Graphene nanodisk |
QD | Quantum dot |
EIT | Electromagnetically induced transparency |
References
- Gibbs, H. Optical Bistability: Controlling Light with Light; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Abraham, E.; Smith, S. Optical bistability and related devices. Rep. Prog. Phys. 1982, 45, 815. [Google Scholar] [CrossRef]
- Li, Y.N.; Chen, Y.Y.; Wan, R.G.; Yan, H.W. Dynamical switching and memory via incoherent pump assisted optical bistability. Phys. Lett. A 2019, 383, 2248–2254. [Google Scholar] [CrossRef]
- Smith, S. Optical bistability, photonic logic, and optical computation. Appl. Opt. 1986, 25, 1550–1564. [Google Scholar] [CrossRef] [PubMed]
- Assanto, G.; Wang, Z.; Hagan, D.; VanStryland, E. All-optical modulation via nonlinear cascading in type II second-harmonic generation. Appl. Phys. Lett. 1995, 67, 2120–2122. [Google Scholar] [CrossRef]
- Mazurenko, D.A.; Kerst, R.; Dijkhuis, J.; Akimov, A.; Golubev, V.; Kurdyukov, D.; Pevtsov, A.; Sel’Kin, A. Ultrafast optical switching in three-dimensional photonic crystals. Phys. Rev. Lett. 2003, 91, 213903. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.R. Theory of all-optical switching based on the Kerr nonlinearity in metallic nanohybrids. Phys. Rev. A 2020, 102, 013708. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Joshi, A.; Xiao, M. Controlling nonlinear optical processes in multi-level atomic systems. Prog. Opt. 2006, 49, 97. [Google Scholar]
- Nobrega, K.; Da Silva, M.; Sombra, A. Multistable all-optical switching behavior of the asymmetric nonlinear directional coupler. Opt. Commun. 2000, 173, 413–421. [Google Scholar] [CrossRef]
- Miroshnichenko, A.E.; Brasselet, E.; Kivshar, Y.S. All-optical switching and multistability in photonic structures with liquid crystal defects. Appl. Phys. Lett. 2008, 92, 230. [Google Scholar] [CrossRef]
- Sheng, J.; Khadka, U.; Xiao, M. Realization of all-optical multistate switching in an atomic coherent medium. Phys. Rev. Lett. 2012, 109, 223906. [Google Scholar] [CrossRef]
- Martellucci, S.; Chester, A.N. Nonlinear Optics and Optical Computing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 19. [Google Scholar]
- Wang, Z.; Xu, M. Control of the switch between optical multistability and bistability in three-level V-type atoms. Opt. Commun. 2009, 282, 1574–1578. [Google Scholar] [CrossRef]
- Sahrai, M.; Hamedi, H.; Memarzadeh, M. Kerr nonlinearity and optical multi-stability in a four-level Y-type atomic system. J. Mod. Opt. 2012, 59, 980–987. [Google Scholar] [CrossRef]
- Asadpour, S.H.; Soleimani, H.R. Optical bistability and multistability in a four-level quantum system in the presence of plasmonic nanostructure. Phys. E Low-Dimens. Syst. Nanostructures 2016, 75, 112–117. [Google Scholar] [CrossRef]
- Chen, H.; Ren, J.; Gu, Y.; Zhao, D.; Zhang, J.; Gong, Q. Nanoscale Kerr nonlinearity enhancement using spontaneously generated coherence in plasmonic nanocavity. Sci. Rep. 2015, 5, 18315. [Google Scholar] [CrossRef] [PubMed]
- Terzis, A.; Kosionis, S.; Boviatsis, J.; Paspalakis, E. Nonlinear optical susceptibilities of semiconductor quantum dot–metal nanoparticle hybrids. J. Mod. Opt. 2016, 63, 451–461. [Google Scholar] [CrossRef]
- Ren, J.; Chen, H.; Gu, Y.; Zhao, D.; Zhou, H.; Zhang, J.; Gong, Q. Plasmon-enhanced Kerr nonlinearity via subwavelength-confined anisotropic Purcell factors. Nanotechnology 2016, 27, 425205. [Google Scholar] [CrossRef]
- Tohari, M.; Lyras, A.; AlSalhi, M. Giant Self-Kerr Nonlinearity in the Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid Systems Under Low-Intensity Light Irradiance. Nanomaterials 2018, 8, 521. [Google Scholar] [CrossRef]
- Kosionis, S.G.; Paspalakis, E. Control of Self-Kerr Nonlinearity in a Driven Coupled Semiconductor Quantum Dot–Metal Nanoparticle Structure. J. Phys. Chem. C 2019, 123, 7308–7317. [Google Scholar] [CrossRef]
- Bao, C.; Qi, Y.; Niu, Y.; Gong, S. Surface plasmon-assisted optical bistability in the quantum dot-metal nanoparticle hybrid system. J. Mod. Opt. 2016, 63, 1280–1285. [Google Scholar] [CrossRef]
- Wang, H.; Goorskey, D.; Xiao, M. Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system. Phys. Rev. Lett. 2001, 87, 073601. [Google Scholar] [CrossRef]
- Van Doai, L.; Khoa, D.X.; Bang, N.H. EIT enhanced self-Kerr nonlinearity in the three-level lambda system under Doppler broadening. Phys. Scr. 2015, 90, 045502. [Google Scholar] [CrossRef]
- Yan, X.A.; Wang, L.Q.; Yin, B.Y.; Song, J.P. Electromagnetically induced transparency and enhanced self-Kerr nonlinearity in a four-level scheme. Optik 2011, 122, 986–990. [Google Scholar] [CrossRef]
- Solookinejad, G.; Jabbari, M.; Nafar, M.; Ahmadi, E.; Asadpour, S. Incoherent control of optical bistability and multistability in a hybrid system: Metallic nanoparticle-quantum dot nanostructure. J. Appl. Phys. 2018, 124, 063102. [Google Scholar] [CrossRef]
- Hendry, E.; Hale, P.J.; Moger, J.; Savchenko, A.; Mikhailov, S.A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 2010, 105, 097401. [Google Scholar] [CrossRef]
- Cheng, J.L.; Vermeulen, N.; Sipe, J. Third order optical nonlinearity of graphene. New J. Phys. 2014, 16, 053014. [Google Scholar] [CrossRef]
- Dai, X.; Jiang, L.; Xiang, Y. Low threshold optical bistability at terahertz frequencies with graphene surface plasmons. Sci. Rep. 2015, 5, 12271. [Google Scholar] [CrossRef]
- Sharif, M.A.; Khodavirdizadeh, M.; Salmani, S.; Mohajer, S.; Ara, M.M. Difference Frequency Generation-based ultralow threshold Optical Bistability in graphene at visible frequencies, an experimental realization. J. Mol. Liq. 2019, 284, 92–101. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, Z.; Ding, C.; Yu, R.; Yang, X. Controllable optical bistability and multistability in a graphene monolayer system. J. Lumin. 2016, 170, 72–77. [Google Scholar] [CrossRef]
- Sadeghi, M.; Ahmadi, V. Multilayer graphene based optical bistability. JOSA B 2018, 35, 528–532. [Google Scholar] [CrossRef]
- Naseri, T.; Daneshfar, N.; Moradi-Dangi, M.; Eynipour-Malaee, F. Terahertz optical bistability of graphene-coated cylindrical core–shell nanoparticles. J. Theor. Appl. Phys. 2018, 12, 257–263. [Google Scholar] [CrossRef]
- Tohari, M.; Lyras, A.; Alsalhi, M. Ultrafast Energy Transfer in the Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid Systems. Plasmonics 2019, 14, 17–24. [Google Scholar] [CrossRef]
- Singh, J.; Williams, R.T. Excitonic and Photonic Processes in Materials; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Bonifacio, R.; Lugiato, L. Optical bistability and cooperative effects in resonance fluorescence. Phys. Rev. A 1978, 18, 1129. [Google Scholar] [CrossRef]
- Falkovsky, L. Optical properties of graphene. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2008; Volume 129, p. 012004. [Google Scholar]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, L.; Jia, Y.; Dai, X.; Xiang, Y.; Fan, D. Low threshold optical bistability in one-dimensional gratings based on graphene plasmonics. Opt. Express 2017, 25, 5972–5981. [Google Scholar] [CrossRef]
- Kar, A.; Goswami, N.; Saha, A. Long-range surface plasmon-induced tunable ultralow threshold optical bistability using graphene sheets at terahertz frequency. Appl. Opt. 2017, 56, 2321–2329. [Google Scholar] [CrossRef]
- Berman, P.R.; Lin, C.C.; Arimondo, E. Advances in Atomic, Molecular, and Optical Physics; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
System Component (s) | Parameter (Symbol) | Value |
---|---|---|
The Metal Nanoparticle (MNP) | High-frequency dielectric constant () | |
Plasma frequency () | (s−1) | |
Damping rate of plasmon(s) () | (s−1) | |
The Graphene Nanodisk (GND) | Thickness () | (nm) |
Radius () | (nm) | |
Mobility () | (cm2/Vs) | |
Fermi energy () | (eV) | |
The CdSe Quantum Dot (CdSe QD) | Dielectric constant () | |
Dipole moment transition () | (e nm) | |
Atomic number density (N) | (m−3) | |
The GaAs substrate (Background) | Dielectric constant () |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tohari, M.M.; Alqahtani, M.M.; Lyras, A. Optical Multistability in the Metal Nanoparticle–Graphene Nanodisk–Quantum Dot Hybrid Systems. Nanomaterials 2020, 10, 1687. https://doi.org/10.3390/nano10091687
Tohari MM, Alqahtani MM, Lyras A. Optical Multistability in the Metal Nanoparticle–Graphene Nanodisk–Quantum Dot Hybrid Systems. Nanomaterials. 2020; 10(9):1687. https://doi.org/10.3390/nano10091687
Chicago/Turabian StyleTohari, Mariam M., Moteb M. Alqahtani, and Andreas Lyras. 2020. "Optical Multistability in the Metal Nanoparticle–Graphene Nanodisk–Quantum Dot Hybrid Systems" Nanomaterials 10, no. 9: 1687. https://doi.org/10.3390/nano10091687
APA StyleTohari, M. M., Alqahtani, M. M., & Lyras, A. (2020). Optical Multistability in the Metal Nanoparticle–Graphene Nanodisk–Quantum Dot Hybrid Systems. Nanomaterials, 10(9), 1687. https://doi.org/10.3390/nano10091687