Femtosecond Pulse Ablation Assisted Mg-ZnO Nanoparticles for UV-Only Emission
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.2. UV Emission and Spectroscopy
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lorenz, M.; Rao, M.R.; Venkatesan, T.; Fortunato, E.; Barquinha, P.; Branquinho, R.; Salgueiro, D.; Martins, R.; Carlos, E.; Liu, A.; et al. The 2016 oxide electronic materials and oxide interfaces roadmap. J. Phys. D Appl. Phys. 2016, 49, 433001. [Google Scholar] [CrossRef]
- Lim, J.H.; Kang, C.K.; Kim, K.K.; Park, I.K.; Hwang, D.K.; Park, S.J. UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering. Adv. Mater. 2006, 18, 2720–2724. [Google Scholar] [CrossRef]
- Zeng, H.; Duan, G.; Li, Y.; Yang, S.; Xu, X.; Cai, W. Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls. Adv. Funct. Mater. 2010, 20, 561–572. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Gimenez, A.J.; Yáñez-Limón, J.M.; Seminario, J.M. ZnO Paper Based Photoconductive UV Sensor. J. Phys. Chem. C 2011, 115, 282–287. [Google Scholar] [CrossRef]
- Djurišić, A.B.; Leung, Y.H. Optical Properties of ZnO Nanostructures. Small 2018, 2, 944–961. [Google Scholar] [CrossRef]
- Keis, K.; Magnusson, E.; Lindström, H.; Lindquist, S.E.; Hagfeldt, A. A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol. Energy Mater. Sol. Cells 2002, 73, 51–58. [Google Scholar] [CrossRef]
- Mishra, Y.K.; Adelung, R. ZnO tetrapod materials for functional applications. Mater. Today 2018, 21, 631–651. [Google Scholar] [CrossRef]
- Jiang, J.; Pi, J.; Cai, J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg. Chem. Appl. 2018, 2018, 1565–3633. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori Mohd, S.K.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activityand Toxicity Mechanism. Nano Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef]
- Abdalkarim, S.Y.H.; Yu, H.Y.; Wang, C.; Yang, L.; Guan, Y.; Huang, L.; Yao, J. Sheet-like Cellulose Nanocrystal-ZnO Nanohybrids as Multifunctional Reinforcing Agents in Biopolyester Composite Nanofibers with Ultrahigh UV-Shielding and Antibacterial Performances. ACS Appl. Bio Mater. 2018, 1, 714–727. [Google Scholar] [CrossRef]
- Agrawal, J.; Dixit, T.; Palani, A.I.; Rao, M.S.R.; Singh, V. Zinc Interstitial Rich ZnO Honeycomb Nanostructures for Deep UV Photodetection. Phys. Status Solidi Rapid Res. Lett. 2018, 12, 1800241. [Google Scholar] [CrossRef]
- Raji, R.; Gopchandran, K. ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing. J. Sci. Adv. Mater. Devices 2017, 2, 51–58. [Google Scholar] [CrossRef]
- Wang, S.P.; Zhong, S.L.; Xu, H.L. Shape tuning of ZnO with ammonium molybdate and their morphology-dependent photoluminescence properties. J. Phys. Conf. Ser. 2009, 188, 012034. [Google Scholar] [CrossRef]
- Shalish, I.; Temkin, H.; Narayanamurti, V. Size-dependent surface luminescence in ZnO nanowires. Phys. Rev. B 2004, 69, 245401. [Google Scholar] [CrossRef]
- Ghosh, M.; Raychaudhuri, A.K. Shape transition in ZnO nanostructures and its effect on blue-green photoluminescence. Nanotechnology 2008, 19, 445704. [Google Scholar] [CrossRef]
- Yadav, M.K.; Ghosh, M.; Biswas, R.; Raychaudhuri, A.K.; Mookerjee, A.; Datta, S. Band-gap variation in Mg- and Cd-doped ZnO nanostructures and molecular clusters. Phys. Rev. B 2007, 76, 195450. [Google Scholar] [CrossRef]
- Chen, K.; Fang, T.; Hung, F.; Ji, L.; Chang, S.; Young, S.; Hsiao, Y. The crystallization and physical properties of Al-doped ZnO nanoparticles. Appl. Surf. Sci. 2008, 254, 5791–5795. [Google Scholar] [CrossRef]
- Janotti, A.; de Walle, C.G.V. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef]
- Fabitha, K.; Rao, M.R. Ho3+-doped ZnO nano phosphor for low-threshold sharp red light emission at elevated temperatures. JOSA B 2017, 34, 2485–2492. [Google Scholar] [CrossRef]
- Singh, S.; Rama, N.; Ramachandra Rao, M. Influence of d-d transition bands on electrical resistivity in Ni doped polycrystalline ZnO. Appl. Phys. Lett. 2006, 88, 222111. [Google Scholar] [CrossRef]
- Singh, S.; Rao, M.R. Optical and electrical resistivity studies of isovalent and aliovalent 3 d transition metal ion doped ZnO. Phys. Rev. B 2009, 80, 045210. [Google Scholar] [CrossRef]
- Pradeev raj, K.; Sadaiyandi, K.K.; Kennedy, A.; Sagadevan, S.; Chowdhury, Z.Z.; Johan, M.R.B.; Aziz, F.A.; Rafique, R.F.; Thamiz Selvi, R.; Rathina bala, R. Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis. Nanoscale Res. Lett. 2018, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Manaia, E.B.; Kaminski, R.C.K.; Caetano, B.L.; Briois, V.; Chiavacci, L.A.; Bourgaux, C. Surface modified Mg-doped ZnO QDs for biological imaging. Eur. J. Nanomed. 2015, 7, 109–120. [Google Scholar] [CrossRef]
- Liu, K.; Sakurai, M.; Aono, M. ZnO-based ultraviolet photodetectors. Sensors 2010, 10, 8604–8634. [Google Scholar] [CrossRef]
- Oguma, K.; Kita, R.; Sakai, H.; Murakami, M.; Takizawa, S. Application of UV light emitting diodes to batch and flow-through water disinfection systems. Desalination 2013, 328, 24–30. [Google Scholar] [CrossRef]
- Dimapilis, E.A.S.; Hsu, C.S.; Mendoza, R.M.O.; Lu, M.C. Zinc oxide nanoparticles for water disinfection. Sustain. Environ. Res. 2018, 28, 47–56. [Google Scholar] [CrossRef]
- Yousefi, R.; Zak, A.K.; Jamali-Sheini, F. Growth, X-ray peak broadening studies, and optical properties of Mg-doped ZnO nanoparticles. Mater. Sci. Semicon Proc. 2013, 16, 771–777. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Zhu, K.R.; Lin, Z.Q.; Jin, S.W.; Li, G. Structure and Raman scattering of Mg-doped ZnO nanoparticles prepared by sol–gel method. Rare Met. 2018, 37, 881–885. [Google Scholar] [CrossRef]
- Fujihara, S.; Ogawa, Y.; Kasai, A. Tunable Visible Photoluminescence from ZnO Thin Films through Mg-Doping and Annealing. ACS Chem. Mater. 2004, 16, 2965–2968. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, P.; Hui, K.S.; Hui, K.N.; Ramam, K.; Tiwari, R.S.; Srivastava, O.N. Synthesis, band-gap tuning, structural and optical investigations of Mg doped ZnO nanowires. RSC CrystEngComm 2012, 14, 5898–5904. [Google Scholar] [CrossRef]
- Fazio, E.; Cacciola, A.; Mezzasalma, A.; Mondio, G.; Neri, F.; Saija, R. Modelling of the optical absorption spectra of PLAL prepared ZnO colloids. J. Quant. Spectrosc. Radiat. Transf. 2013, 124, 86–93. [Google Scholar] [CrossRef]
- Navas, M.; Soni, R.; Tarasenka, N.; Tarasenko, N. Temperature and solution assisted synthesis of anisotropic ZnO nanostructures by pulsed laser ablation. Appl. Surf. Sci. 2017, 414, 413–423. [Google Scholar] [CrossRef]
- Said, A.; Sajti, L.; Giorgio, S.; Marine, W. Synthesis of nanohybrid materials by femtosecond laser ablation in liquid medium. J. Phys. Conf. Ser. 2007, 59, 259–265. [Google Scholar] [CrossRef]
- Sajti, C.; Giorgio, S.; Khodorkovsky, V.; Marine, W. Femtosecond laser synthesized nanohybrid materials for bioapplications. Appl. Surf. Sci. 2007, 253, 8111–8114. [Google Scholar] [CrossRef]
- Chelnokov, E.; Rivoal, M.; Colignon, Y.; Gachet, D.; Bekere, L.; Thibaudau, F.; Giorgio, S.; Khodorkovsky, V.; Marine, W. Band gap tuning of ZnO nanoparticles via Mg doping by femtosecond laser ablation in liquid environment. Appl. Surf. Sci. 2012, 258, 9408–9411. [Google Scholar] [CrossRef]
- Ahn, C.H.; Kim, Y.Y.; Kim, D.C.; Mohanta, S.K.; Cho, H.K. A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 2009, 105, 013502. [Google Scholar] [CrossRef]
- Ohtomo, A.; Kawasaki, M.; Koida, T.; Masubuchi, K.; Koinuma, H.; Sakurai, Y.; Yoshida, Y.; Yasuda, T.; Segawa, Y. MgxZn1-xO as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 1998, 72, 2466–2468. [Google Scholar] [CrossRef]
- Kim, Y.I.; Page, K.; Seshadri, R. Synchrotron X-ray study of polycrystalline wurtzite Zn1-xMgxO (0≤ x ≤ 0.15): Evolution of crystal structure and polarization. Appl. Phys. Lett. 2007, 90, 101904. [Google Scholar] [CrossRef]
- De Prado, E.; Florian, C.; Sotillo, B.; Siegel, J.; Solis, J.; Fernández, P. Optical spectroscopy study of nano- and microstructures fabricated by femtosecond laser pulses on ZnO based systems. CrystEngComm 2018, 20, 2952–2960. [Google Scholar] [CrossRef]
- Jaramillo, A.; Baez-Cruz, R.; Montoya, L.; Medinam, C.; Pérez-Tijerina, E.; Salazar, F.; Rojas, D.; Melendrez, M. Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman Spectroscopy. Ceram. Int. 2017, 43, 11838–11847. [Google Scholar] [CrossRef]
- Šćepanović, M.; Grujić-Brojčin, M.; Vojisavljević, K.; Bernik, S.; Srećković, T. Raman study of structural disorder in ZnO nanopowders. J. Raman Spectrosc. 2010, 41, 914–921. [Google Scholar] [CrossRef]
- Gupta, J.; Bahadur, D. Defect-Mediated Reactive Oxygen Species Generation in Mg-Substituted ZnO Nanoparticles: Efficient Nanomaterials for Bacterial Inhibition and Cancer Therapy. ACS Omega 2018, 3, 2956–2965. [Google Scholar] [CrossRef] [PubMed]
- Coulter, J.B.; Birnie, D.P., III. Assessing Tauc Plot Slope Quantification: ZnO Thin Films as a Model System. Phys. Status Solidi B 2018, 255, 1700393. [Google Scholar] [CrossRef]
- Adachi, S. Energy-Band Structure: Energy-Band Gaps. In Properties of Semiconductor Alloys; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; Chapter 6; pp. 133–228. [Google Scholar]
- Makino, T.; Segawa, Y.; Kawasaki, M.; Ohtomo, A.; Shiroki, R.; Tamura, K.; Yasuda, T.; Koinuma, H. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films. Appl. Phys. Lett. 2001, 78, 1237–1239. [Google Scholar] [CrossRef]
- Tsay, C.; Chen, S.T.; Fan, M. Solution-Processed Mg-Substituted ZnO Thin Films for Metal-Semiconductor- Metal Visible-Blind Photodetectors. Coatings 2019, 9, 277. [Google Scholar] [CrossRef]
- Lima, S.; Sigoli, F.; Jafelicci, M.J.; Davolos, M. Luminescent properties and lattice defects correlation on zinc oxide. J. Inorg. Mater. 2001, 3, 749–754. [Google Scholar] [CrossRef]
- De Oliveira, R.C.; Martins, D.E.; Bernardi, M.I.B.; Mesquita, A. Zn1-xMgxO nanoparticles prepared by the polymeric precursor method: Correlation between photoluminescence and local structure. Opt. Mater. 2018, 86, 71–78. [Google Scholar] [CrossRef]
- Vanheusden, K.; Seager, C.H.; Warren, W.L.; Tallant, D.R.; Voigt, J.A. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 1996, 68, 403–405. [Google Scholar] [CrossRef]
- Trunk, M.; Venkatachalapathy, V.; Galeckas, A.; Kuznetsov, A.Y. Deep level related photoluminescence in ZnMgO. Appl. Phys. Lett. 2010, 97, 211901. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, Y.; Peng, H.; Wei, J.; Zhang, S.; Chen, S. Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer. Nanoscale 2017, 9, 8962–8969. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, D.; Xue, Z.; Zhang, X. Mechanisms of green emission from ZnO films prepared by rf magnetron sputtering. Opt. Mater. 2004, 26, 23–26. [Google Scholar] [CrossRef]
- Lähnemann, J.; Flissikowski, T.; Wölz, M.; Geelhaar, L.; Grahn, H.T.; Brandt, O.; Jahn, U. Quenching of the luminescence intensity of GaN nanowires under electron beam exposure: Impact of C adsorption on the exciton lifetime. Nanotechnology 2016, 27, 455706. [Google Scholar] [CrossRef] [PubMed]
- Willander, M.; Nur, O.; Sadaf, J.R.; Qadir, M.I.; Zaman, S.; Zainelabdin, A.; Bano, N.; Hussain, I. Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices. Materials 2010, 3, 2643–2667. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahoo, A.; Miryala, M.; Dixit, T.; Klimkowicz, A.; Francis, B.; Murakami, M.; Rao, M.S.R.; Krishnan, S. Femtosecond Pulse Ablation Assisted Mg-ZnO Nanoparticles for UV-Only Emission. Nanomaterials 2020, 10, 1326. https://doi.org/10.3390/nano10071326
Sahoo A, Miryala M, Dixit T, Klimkowicz A, Francis B, Murakami M, Rao MSR, Krishnan S. Femtosecond Pulse Ablation Assisted Mg-ZnO Nanoparticles for UV-Only Emission. Nanomaterials. 2020; 10(7):1326. https://doi.org/10.3390/nano10071326
Chicago/Turabian StyleSahoo, Anubhab, Muralidhar Miryala, Tejendra Dixit, Alicja Klimkowicz, Bellarmine Francis, Masato Murakami, Mamidanna Sri Ramachandra Rao, and Sivarama Krishnan. 2020. "Femtosecond Pulse Ablation Assisted Mg-ZnO Nanoparticles for UV-Only Emission" Nanomaterials 10, no. 7: 1326. https://doi.org/10.3390/nano10071326
APA StyleSahoo, A., Miryala, M., Dixit, T., Klimkowicz, A., Francis, B., Murakami, M., Rao, M. S. R., & Krishnan, S. (2020). Femtosecond Pulse Ablation Assisted Mg-ZnO Nanoparticles for UV-Only Emission. Nanomaterials, 10(7), 1326. https://doi.org/10.3390/nano10071326