Photocatalytic Oxidation of Propane Using Hydrothermally Prepared Anatase-Brookite-Rutile TiO2 Samples. An In Situ DRIFTS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TiO2 Materials
2.3. Characterization
2.4. Photocatalytic Oxidation of Propane in Batch Reactor
2.5. In Situ Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) Study of the Photocatalytic Oxidation of Propane
3. Results
3.1. Photocatalysts’ Properties
3.2. Propane Oxidation in Photocatalytic Batch Reactor
3.2.1. Propane Adsorption in Dark Conditions
3.2.2. Propane Conversion under Illumination
3.3. Study by In Situ DRIFTS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, Z.; Kong, L.; Chu, Z.; France, L.J.; Xiao, T.; Edwards, P.P. Catalytic combustion of propane over mixed oxides derived from CuxMg3−xAl hydrotalcites. Fuel 2012, 96, 257–263. [Google Scholar] [CrossRef]
- Tanaka, M.; Tsujimoto, Y.; Miyazaki, T.; Warashina, M.; Wakamatsu, S. Peculiarities of volatile hydrocarbon emissions from several types of vehicles in Japan. Chemosph. Glob. Chang. Sci. 2001, 3, 185–197. [Google Scholar] [CrossRef]
- Assadi, A.A.; Bouzaza, A.; Wolbert, D. Comparative study between laboratory and large pilot scales for VOC’s removal from gas streams in continuous flow surface discharge plasma. Chem. Eng. Res. Des. 2016, 106, 308–314. [Google Scholar] [CrossRef]
- Assadi, A.A.; Bouzaza, A.; Soutrel, I.; Petit, P.; Medimagh, K.; Wolbert, D. A study of pollution removal in exhaust gases from animal quartering centers by combining photocatalysis with surface discharge plasma: From pilot to industrial scale. Chem. Eng. Process. Process Intensif. 2017, 111, 1–6. [Google Scholar] [CrossRef]
- Lyulyukin, M.N.; Kolinko, P.A.; Selishchev, D.S.; Kozlov, D.V. Hygienic aspects of TiO2-mediated photocatalytic oxidation of volatile organic compounds: Air purification analysis using a total hazard index. Appl. Catal. B Environ. 2017, 220, 386–396. [Google Scholar] [CrossRef]
- Finger, M.; Haeger, A.; Hesse, D. Kinetics and mechanisms of photocatalyzed total oxidation reaction of hydrocarbon species with titanium dioxide in the gas phase. Chem. Eng. Technol. 2005, 28, 783–789. [Google Scholar] [CrossRef]
- Van der Meulen, T.; Mattson, A.; Österlund, L. A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2 nanoparticles: Role of surface intermediates. J. Catal. 2007, 251, 131–144. [Google Scholar] [CrossRef]
- Brigden, C.T.; Poulston, S.; Twigg, M.V.; Walker, A.P.; Wilkins, A.J. Photo-oxidation of short-chain hydrocarbons over titania. Appl. Catal. B Environ. 2001, 32, 63–71. [Google Scholar] [CrossRef]
- Haeger, A.; Kleinschmidt, O.; Hesse, D. Kinetics of photocatalyzed gas reactions using titanium dioxide as the catalyst part II: Photocatalyzed total oxidation of alkanes with oxygen. Chem. Eng. Technol. 2004, 27, 1019–1026. [Google Scholar] [CrossRef]
- Österlund, L. Fourier-Transform Infrared and Raman Spectroscopy of Pure and Doped TiO2 Photocatalysts. In On Solar Hydrogen & Nanotechnology; Vayssieres, L., Ed.; John Wiley & Sons Asia Pte Ltd.: Singapore, 2009; pp. 18–21. ISBN 9780470823972. [Google Scholar]
- Szanyi, J.; Kwak, J.H. Photo-catalytic oxidation of acetone on a TiO2 powder: An in situ FTIR investigation. J. Mol. Catal. A Chem. 2015, 406, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Cano-Casanova, L.; Amorós-Pérez, A.; Ouzzine, M.; Lillo-Ródenas, M.A.; Román-Martínez, M.C. One step hydrothermal synthesis of TiO2 with variable HCl concentration: Detailed characterization and photocatalytic activity in propene oxidation. Appl. Catal. B Environ. 2018, 220, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Busca, G.; Finocchio, E.; Lorenzelli, V.; Ramis, G.; Baldi, M. IR studies on the activation of C-H hydrocarbon bonds on oxidation catalysts. Catal. Today 1999, 49, 453–465. [Google Scholar] [CrossRef]
- Mattsson, A.; Österlund, L. Adsorption and photoinduced decomposition of acetone and acetic acid on anatase, brookite, and rutile TiO2 nanoparticles. J. Phys. Chem. C 2010, 114, 14121–14132. [Google Scholar] [CrossRef]
- Cazorla-Amorós, D.; Alcañiz-Monge, J.; De La Casa-Lillo, M.A.; Linares-Solano, A. CO2 as an adsorptive to characterize carbon molecular sieves and activated carbons. Langmuir 1998, 14, 4589–4596. [Google Scholar] [CrossRef]
- Zhang, H.; Banfield, J.F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B 2000, 104, 3481–3487. [Google Scholar] [CrossRef]
- Gandhe, A.R.; Fernandes, J.B. A simple method to synthesize N-doped rutile titania with enhanced photocatalytic activity in sunlight. J. Solid State Chem. 2005, 178, 2953–2957. [Google Scholar] [CrossRef]
- Fraters, B.D.; Amrollahi, R.; Mul, G. How Pt nanoparticles affect TiO2-induced gas-phase photocatalytic oxidation reactions. J. Catal. 2015, 324, 119–126. [Google Scholar] [CrossRef]
- Fraters, B.D. TiO2 Based Photocatalytic Gas Purification. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 21 May 2015. [Google Scholar]
- Thomas, A.G.; Syres, K.L. Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem. Soc. Rev. 2012, 41, 4207–4217. [Google Scholar] [CrossRef]
- Najafpour Mahdi, M. Semiconductors in organic photosynthesis. In Artificial Photosynthesis; InTech: Rijeka, Croatia, 2012; pp. 79–114. ISBN 9789533079660. [Google Scholar]
- Li, W.K.; Gong, X.Q.; Lu, G.; Selloni, A. Different reactivities of TiO2 polymorphs: Comparative DFT calculations of water and formic acid adsorption at anatase and brookite TiO2 surfaces. J. Phys. Chem. C 2008, 112, 6594–6596. [Google Scholar] [CrossRef]
- Stuart, B. Infrared Spectroscopy: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2004; ISBN 978-0-470-85428-0. [Google Scholar]
- Lamotte, J.; Lavalley, J.-C.; Druet, E.; Freund, E. Infrared study of acid–base properties of thorium dioxide. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1983, 79, 2219. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, L.; Weng, D.; Liu, S.; Si, Z.; Fan, J. Total oxidation of propane on Pt/WOx/Al2O3 catalysts by formation of metastable Pt δ+ species interacted with WOx clusters. J. Hazard. Mater. 2012, 225–226, 146–154. [Google Scholar] [CrossRef]
- Finocchio, E.; Willey, R.J.; Busca, G.; Lorenzelli, V. FTIR studies on the selective oxidation and combustion of light hydrocarbons at metal oxide surfaces 3. Comparison of the oxidation of C-3 organic compounds over Co3O4, MgCr2O4 and CuO. J. Chem. Soc. Faraday Trans 1997, 93, 175–180. [Google Scholar] [CrossRef]
- Finocchio, E.; Busca, G.; Lorenzelli, V.; Escribano, V.S. FTIR studies on the selective oxidation and combustion of light hydrocarbons at metal oxide surfaces. Part 2. Propane and propene oxidation on Co3O4. J. Chem. Soc. Faraday Trans. 1996, 92, 1587. [Google Scholar] [CrossRef]
- Mattsson, A.; Leideborg, M.; Larsson, K.; Westing, G.; Österlund, L. Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films. J. Phys. Chem. B 2006, 110, 1210–1220. [Google Scholar] [CrossRef]
Sample | SBET 1 (m2/g) | VT 1 (cm3/g) | Crystalline TiO2 (%) A-B-R 2 | Average Anatase Crystal Size (nm) 3 | Eg (eV) 4 |
---|---|---|---|---|---|
TiO2–0.5M | 135 | 0.26 | 69-11-0 | 8 | 3.06 |
TiO2–0.8M | 134 | 0.36 | 60-16-1 | 8 | 2.95 |
TiO2–1M | 116 | 0.33 | 62-17-2 | 9 | 2.95 |
TiO2–3M | 117 | 0.32 | 45-23-11 | 9 | 2.72 |
TiO2–7M | 113 | 0.35 | 64-14-1 | 10 | 2.99 |
TiO2–12M | 110 | 0.32 | 66-9-0 | 11 | 3.15 |
P25 | 55 | 0.18 | 73-0-14 | 22 | 2.95 |
Wavenumber (cm−1) | Species | Reference |
---|---|---|
1712 | C=O stretching of H-bonded | [22] |
1698 and 1650 | C=O stretching mode in acetone (υ C=O) | [7] |
1556 | asymmetric strength of the O–C–O bond in formate species | [7] |
1538 | asymmetric strength of the O–C–O bond monodentate carbonate (m−CO32−) | [7] |
1472 | strength mode of C-H bond in CH3 groups or to carbonate species | [23,24] |
1438 | symmetric strength of O–C–O bond in bicarbonate (HCO3−) species and | [7,25] |
1355 | symmetric strength of O–C–O bond in formate species (HCO2−) | [7,25] |
1300 | HCO3− species | [7] |
1240 | C–C bond strength in acetone species | [7] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano-Casanova, L.; Mei, B.; Mul, G.; Lillo-Ródenas, M.Á.; Román-Martínez, M.d.C. Photocatalytic Oxidation of Propane Using Hydrothermally Prepared Anatase-Brookite-Rutile TiO2 Samples. An In Situ DRIFTS Study. Nanomaterials 2020, 10, 1314. https://doi.org/10.3390/nano10071314
Cano-Casanova L, Mei B, Mul G, Lillo-Ródenas MÁ, Román-Martínez MdC. Photocatalytic Oxidation of Propane Using Hydrothermally Prepared Anatase-Brookite-Rutile TiO2 Samples. An In Situ DRIFTS Study. Nanomaterials. 2020; 10(7):1314. https://doi.org/10.3390/nano10071314
Chicago/Turabian StyleCano-Casanova, Laura, Bastian Mei, Guido Mul, María Ángeles Lillo-Ródenas, and María del Carmen Román-Martínez. 2020. "Photocatalytic Oxidation of Propane Using Hydrothermally Prepared Anatase-Brookite-Rutile TiO2 Samples. An In Situ DRIFTS Study" Nanomaterials 10, no. 7: 1314. https://doi.org/10.3390/nano10071314
APA StyleCano-Casanova, L., Mei, B., Mul, G., Lillo-Ródenas, M. Á., & Román-Martínez, M. d. C. (2020). Photocatalytic Oxidation of Propane Using Hydrothermally Prepared Anatase-Brookite-Rutile TiO2 Samples. An In Situ DRIFTS Study. Nanomaterials, 10(7), 1314. https://doi.org/10.3390/nano10071314