Application of Nanostructured Carbon-Based Electrochemical (Bio)Sensors for Screening of Emerging Pharmaceutical Pollutants in Waters and Aquatic Species: A Review
Abstract
:1. Introduction
2. Nanostructured Carbon-Based (Bio)Sensors for Pharmaceutical Pollutants
2.1. Graphene
Analyte | (Bio)Sensor | Detection Technique | Linear Range (µmol L−1) | Sensitivity | LOD (µmol L−1) | Real Sample | Ref. |
---|---|---|---|---|---|---|---|
Antibiotics | |||||||
ciprofloxacin | GCE/Pd-PAAS-GO | DPV | 0.18–10.8 | 0.867 | 0.0045 | shrimp sea cucumber | [68] |
sulfamethazine | GCE/rGO-AuNPs | DPV | 0.5–6.5 | 0.32 | 0.1 | wastewater | [69] |
sulfamethoxazole | SPE/rGO | DPV | 0.5–50 | 0.235 | 0.04 | lake water | [72] |
tetracycline, chlortetracycline doxycycline oxytetracycline | SPE/rGO | AdS-DPV | 20–80 | 0.021 | 12 | river water | [73] |
tetracycline | GCE/graphene/L-cysteine | DPV | 8.0–140 | 0.027 | 0.12 | tap water river water lake water | [74] |
metronidazole | GCE/PDDA-graphene/L-cystine | CV | 0.01–1 70–800 | 0.492 0.084 | 0.0023 | lake water | [75] |
metronidazole | GCE/AgNPs-graphene | LSV | 0.05–10 10–4500 | 0.169 0.040 | 0.028 | lake water | [76] |
metronidazole | GCE/graphene-polythionine | DPV | 0.05–70 70–500 | 0.233 0.061 | 0.001 | tap water river water lake water | [77] |
metronidazole | GCE/graphene-PDDA/DNA | LSV | 0.05–100 400–9500 | 0.471 0.024 | 0.024 | lake water | [78] |
metronidazole | GCE/sulfonated graphene/AgNPs | DPSV | 0.10–20.0 | 1.80 | 0.05 | shrimp | [79] |
chloramphenicol | 0.02–20.0 | 1.94 | 0.01 | ||||
Anti-Inflammatories | |||||||
acetylsalicylic acid | Pt/rGO-AuNPs | DLSV | 0.88–2.80 | - | 0.26 | wastewater | [80] |
piroxicam | GCE/ZnO-GO-glutathione | DPV | 0.1–100 100–500 | 0.206 0.030 | 0.0018 | tap water | [81] |
diclofenac | GCE/graphene-PDDA | DPV | 20–100 20–200 | 0.071 | 0.609 | lake water | [82] |
acetaminophen | 0.636 | 0.221 | |||||
diclofenac | FTO/graphene-CdS/AuNPs/aptamer | PhotoAMP | 0.001–0.15 | 4.32 | 0.00078 | lake water | [83] |
Hormones | |||||||
17β-estradiol | GCE/rGO-MIP-Fe3O4 | DPV | 0.05–10 | 0.871 | 0.000819 | water | [84] |
17β-estradiol | GCE/rGO-CuTthP | DPV | 0.1–1.0 | 0.510 | 0.0053 | river water | [85] |
17β-estradiol | Au/MCH/graphene-aptamer | DPV | 7.0 × 10−8–1.0 × 10−5 | - | 5.0 × 10−8 | tap water | [86] |
17β-estradiol | GCE/graphene-PANI/ PAMAM-Au/ antigen/HRP-Ab-GO | DPV | 0.0272–0.272 | - | 0.0272 | tap water | [87] |
17β-estradiol | GCE/exfoliated graphene | DPV | 0.010–1.5 | 4.43 | 0.0049 | lake water | [88] |
diethylstilbestrol | 0.025–3.0 | 1.65 | 0.01087 | ||||
diethylstilbestrol | SPE/GQD | LSV | 0.05–7.5 | 0.236 | 0.0088 | tap water | [89] |
17α-ethinylestradiol | SPE/rGO/paper/SNPs/Ab | SWV | 1.69 × 10−6–6.10 × 10−4 | - | 3.37 × 10−7 | river water tap water | [90] |
2.2. Carbon Nanotubes
Analyte | (Bio)Sensor | Detection Technique | Linear Range (µmol L−1) | Sensitivity (µA µmol−1 L) | LOD (µmol L−1) | Real Sample | Ref. |
---|---|---|---|---|---|---|---|
Anti-Inflammatories | |||||||
acetaminophen | Au/MWCNT-CuNPs | DPV | 0.5–80 | 2.79 | 0.01 | Wastewater river water | [109] |
acetaminophen | CPE (MWCNT) | DPV | 15–180 | 0.414 | 0.29 | tap water wastewater | [110] |
acetaminophen | GCE/MWCNT-CONH-TAPP/AuNPs | DPV | 4.5–500 | 0.038 | 0.44 | river water | [111] |
diclofenac | GCE/Cu(OH)2-IL-MWCNT | DPV | 0.18–119 | 0.015 | 0.04 | sea water fish serum | [115] |
diclofenac | GCE/MWCNT-AuNPs/antigen/ GO-g-C3N4-Ab | ECL | 0.000017–3.4 | – | 5.7 × 10−6 | tap water, lake water, wastewater | [116] |
diclofenac | Au/AuNPs/MWCNT-GO | DPV | 0.4–80 100–1000 | 0.037 0.019 | 0.09 | tap water | [117] |
ibuprofen | GCE/Chit-IL-MWCNT/TPA/aptamer/MB | DPV | 0.00007–6 | - | 0.00002 | wastewater | [118] |
salicylic acid | CNT-epoxy composite | SWV | 200–1200 | 0.073 | 4 | river water tap water | [119] |
Antibiotics | |||||||
ciprofloxacin | BDD/MWCNT-nafion | DPV | 0.005–0.05 0.05–10 | 41 2.08 | 0.005 | wastewater | [112] |
ciprofloxacin | GCE/PANI/βcyclodextrin-MWCNT | CV | 10–80 | 0.257 | 0.05 | wastewater | [113] |
tetracycline | GCE/MWCNT-nafion | AMP | 2.5–100 | - | 0.12 | fish farm water well water | [120] |
oxytetracycline | 2.5–100 | - | 0.09 | ||||
chlortetracycline | 1–100 | - | 0.31 | ||||
doxycycline | 1–100 | - | 0.44 | ||||
oxytetracycline | GCE/MWCNT-Chit/IL/AuNPs | AMP | 0.2–9 | - | 0.02 | fish meat | [121] |
metronidazole | GCE/MWCNT/MIP | CV | 0.001–1.2 | - | 0.00029 | fish meat | [122] |
sulfanilamide | GCE/MWCNT-nafion | AMP | 0.6–58.1 | 1 | 0.058 | river water tap water | [123] |
sulfadiazine | 0.4–20 | 4.38 | 0.16 | ||||
sulfaguanidine | 0.5–46.7 | 3.55 | 0.14 | ||||
sulfathiazole | 0.4–19.6 | 12.27 | 0.118 | ||||
sulfamerazine | 0.4–11.4 | 2.65 | 0.076 | ||||
sulfisoxazole | 1.9–37.5 | 2.99 | 0.037 | ||||
sulfamethoxazole | CPE (MWCNT-SbNPs) | DPV | 0.1–0.7 | 0.57 | 0.024 | natural water (dam) | [124] |
trimethoprim | 0.1–0.7 | 0.37 | 0.031 | ||||
sulfamethazine | GCE/SWCNT-Chit/CTAB-AuNPs/antigen/Ab1/Ab2-AgNPs-DFNS | AMP | 0.0016–0.15 | - | 0.00024 | river water lake water pond water | [125] |
Hormones | |||||||
17α-ethinylestradiol | GCE/MWCNT-nafion/PolyNiTPPS | AMP | 0.2–60 | 0.12 | 0.12 | well water tap water lake water | [106] |
17α-ethinylestradiol | GCE/MWCNT-Nafion | SWV | 6.8 × 10−8–2.4 × 10−4 | - | 3.4 × 10−8 | river water tap water | [104] |
17α-ethinylestradiol | GCE/SWCNT-Cdot/laccase | DPV | 0.05–7 | 0.75 | 0.004 | tap water | [126] |
17α-ethinylestradiol | GCE/MWCNT/CoPc | SWV | 2.5–90 | 0.179 | 2.2 | river water | [108] |
17α-ethinylestradiol | GCE/MWCNT/Fe3O4-Tannic_acid-AuNPs | DPV | 0.01–120 | 0.676 | 0.0033 | Wastewater natural water | [105] |
diethylstilbestrol | GCE/AuNPs/MWCNT-CoPc | SWV | 0.79–5.7 | 1.05 | 0.2 | natural water (dam) | [127] |
17β-estradiol | GCE/MOF(Al)-CNT/PB/MIP(PPy) | DPV | 1 × 10−8–1 × 10−3 | 21000 | 6.2 × 10−9 | pond water | [128] |
Anticonvulsants | |||||||
carbamazepine | GCE/MWCNT | LSV | 0.13–1.6 | 2.59 | 0.04 | wastewater | [129] |
Antiacids | |||||||
omeprazole | GCE/PDDA/Fe3O4-MWCNT | LSV | 0.05–9 | 3.28 | 0.015 | wastewater | [130] |
β-Blockers | |||||||
propranolol | GCE/MWCNT-IL | DPV | – | – | – | lake water | [131] |
2.3. Carbon Black
Analyte | Sensor | Detection Technique | Linear Range (µmol L−1) | Sensitivity (µA µmol−1 L) | LOD (µmol L−1) | Real Sample | Ref. |
---|---|---|---|---|---|---|---|
Antibiotics | |||||||
oxytetracycline | CPE (montmorillonite-acetylene black) | DPV | 0.5–50 | 0.0281 | 0.087 | fish shrimp | [136] |
tetracycline | GCE/CB-PS | DPV | 5–120 | 0.033 | 1.15 | tap water river water | [137] |
trimethoprim | GCE/CB-CuPh | SWV | 0.4–1.1 1.5–6.0 | 5.82 0.79 | 0.67 | river water | [138] |
Antibiotics and Anti-Inflammatories Simultaneously | |||||||
amoxicillin nimesulide | GCE/CB-DHP | SWV | 1.0–18.8 0.3–5.0 | 0.030 0.56 | 0.12 0.016 | lake water tap water | [139] |
levofloxacin | SPE/CB(BP) | SWV | 0.90–7 0.0 | 0.66 | 0.42 | river water | [140] |
acetaminophen | 4.0–80.0 | 0.31 | 2.6 | ||||
levofloxacin | GCE/AgNPs-CB-PEDOT:PSS | SWV | 0.67–12 | 1.9 | 0.012 | river water | [141] |
acetaminophen | 0.62–7.1 | 1.7 | 0.014 | ||||
Antidiabetics | |||||||
metformin | GCE/CB–DHP | DPV | 2.0–10.0 | 640 | 0.63 | wastewater | [142] |
Hormones | |||||||
diethylstilbestrol | CPE(CB) | SWV | 0.016–0.465 | 5.4 | 0.008 | fishery water | [143] |
2.4. Other Carbon-Based Nanomaterials
Analyte | (Bio)Sensor | Detection technique | Linear range (µmol L−1) | Sensitivity (µA µmol−1 L) | LOD (µmol L−1) | Real Sample | Ref. |
---|---|---|---|---|---|---|---|
Antibiotics | |||||||
amoxicillin | Graphite/TiO2-OMC-AuNPs-Nafion | CV | 0.5–2.5 2.5–133 | 1.42 0.832 | 0.3 | bottled water river water | [144] |
sulfamethoxazole | CPE (CN) | SWV | 1.0–10 10–75 | 0.045 0.017 | 0.12 | drinking water | [146] |
Antibiotic,central nervous system agent, anti-inflammatory and analgesic simultaneously | |||||||
ofloxacin levodopa piroxicam methocarbamol | CPE (βcyclodextrin-GrO) | SWV | 1.0–20 1.0–15 1.0–20 1.0–50 | 0.550 0.551 0.699 0.075 | 0.065 0.105 0.089 0.398 | river water | [148] |
Antiacid | |||||||
omeprazole | CPE (mercapto-MC) | DPV | 0.00025–25 | 1.0 | 0.00004 | tap water | [145] |
Hormones | |||||||
17β–estradiol | GCE/biocharNPs | DPV | 0.05–20 | 0.85 | 0.0113 | ground water | [147] |
Anti-inflammatories | |||||||
acetaminophen ibuprofen | SPCNFE | DPV | – | – | 0.2 2.9 | tap water wastewater | [151] |
diclofenac | CPE (fullereneC60-CNF) | SWV | – | 1.08 | 0.0009 | tap water | [149] |
3. Overall Comparison between Reported Nanostructured Carbon-Based (Bio)Sensors
4. Conclusions and Future Trends
Funding
Acknowledgments
Conflicts of Interest
References
- World Population Prospects 2019: Highlights; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019.
- Nikolaou, A.; Meric, S.; Fatta, D. Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem. 2007, 387, 1225–1234. [Google Scholar] [CrossRef]
- Ebele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. Handb. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Miller, T.H.; Bury, N.R.; Owen, S.F.; MacRae, J.I.; Barron, L.P. A review of the pharmaceutical exposome in aquatic fauna. Environ. Pollut. 2018, 239, 129–146. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. J. Environ. Manag. 2016, 182, 620–640. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Sci. Total Environ. 2016, 543, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Blair, B.; Nikolaus, A.; Hedman, C.; Klaper, R.; Grundl, T. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere 2015, 134, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.J.; Cruzeiro, C.; Ferreira, C.; Rocha, E. Occurrence of endocrine disruptor compounds in the estuary of the Iberian Douro River and nearby Porto Coast (NW Portugal). Toxicol. Environ. Chem. 2012, 94, 252–261. [Google Scholar] [CrossRef]
- Santos, L.H.M.L.M.; Gros, M.; Rodriguez-Mozaz, S.; Delerue-Matos, C.; Pena, A.; Barceló, D.; Montenegro, M.C.B.S.M. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: Identification of ecologically relevant pharmaceuticals. Sci. Total Environ. 2013, 461–462, 302–316. [Google Scholar] [CrossRef]
- Paíga, P.; Santos, L.H.M.L.M.; Ramos, S.; Jorge, S.; Silva, J.G.; Delerue-Matos, C. Presence of pharmaceuticals in the Lis river (Portugal): Sources, fate and seasonal variation. Sci. Total Environ. 2016, 573, 164–177. [Google Scholar] [CrossRef]
- Fernández-Rubio, J.; Rodríguez-Gil, J.L.; Postigo, C.; Mastroianni, N.; López de Alda, M.; Barceló, D.; Valcárcel, Y. Psychoactive pharmaceuticals and illicit drugs in coastal waters of North-Western Spain: Environmental exposure and risk assessment. Chemosphere 2019, 224, 379–389. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Xu, X.-R.; Liu, S.-S.; Zhou, G.-J.; Sun, K.-F.; Zhao, J.-L.; Ying, G.-G. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure. Mar. Pollut. Bull. 2015, 90, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y.; Lee, I.-S.; Oh, J.-E. Human and veterinary pharmaceuticals in the marine environment including fish farms in Korea. Sci. Total Environ. 2017, 579, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-R.; Owens, G.; Kwon, S.-I.; So, K.-H.; Lee, D.-B.; Ok, Y.S. Occurrence and Environmental Fate of Veterinary Antibiotics in the Terrestrial Environment. Water Air Soil Pollut. 2011, 214, 163–174. [Google Scholar] [CrossRef]
- Biel-Maeso, M.; Corada-Fernández, C.; Lara-Martín, P.A. Monitoring the occurrence of pharmaceuticals in soils irrigated with reclaimed wastewater. Environ. Pollut. 2018, 235, 312–321. [Google Scholar] [CrossRef] [PubMed]
- OSPAR Commission. Hazardous Substances. Available online: https://www.ospar.org/work-areas/hasec/chemicals (accessed on 12 March 2020).
- Barra Caracciolo, A.; Topp, E.; Grenni, P. Pharmaceuticals in the environment: Biodegradation and effects on natural microbial communities. A review. J. Pharm. Biomed. Anal. 2015, 106, 25–36. [Google Scholar] [CrossRef]
- Bu, Q.; Shi, X.; Yu, G.; Huang, J.; Wang, B. Assessing the persistence of pharmaceuticals in the aquatic environment: Challenges and needs. Emerg. Contam. Handb. 2016, 2, 145–147. [Google Scholar] [CrossRef] [Green Version]
- Stockholm Convention on Persistent Organic Pollutants; United Nations Environment Programme, Secretariat of the Stockholm Convention: Geneva, Switzerland, 2018.
- Rodríguez-Mozaz, S.; Huerta, B.; Barceló, D. Bioaccumulation of Emerging Contaminants in Aquatic Biota: Patterns of Pharmaceuticals in Mediterranean River Networks. In Emerging Contaminants in River Ecosystems. The Handbook of Environmental Chemistry; Petrovic, M.S., Elosegi, A., Barceló, D., Eds.; Springer: New York, NY, USA, 2015; Volume 46. [Google Scholar]
- Zenker, A.; Cicero, M.R.; Prestinaci, F.; Bottoni, P.; Carere, M. Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J. Environ. Manag. 2014, 133, 378–387. [Google Scholar] [CrossRef]
- De Solla, S.R.; Gilroy, È.A.M.; Klinck, J.S.; King, L.E.; McInnis, R.; Struger, J.; Backus, S.M.; Gillis, P.L. Bioaccumulation of pharmaceuticals and personal care products in the unionid mussel Lasmigona costata in a river receiving wastewater effluent. Chemosphere 2016, 146, 486–496. [Google Scholar] [CrossRef]
- Howard, P.H.; Muir, D.C.G. Identifying New Persistent and Bioaccumulative Organics Among Chemicals in Commerce II: Pharmaceuticals. Environ. Sci. Technol. 2011, 45, 6938–6946. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Colborn, T.; Hayes, T.B.; Heindel, J.J.; Jacobs, D.R., Jr.; Lee, D.-H.; Shioda, T.; Soto, A.M.; vom Saal, F.S.; Welshons, W.V.; et al. Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocr. Rev. 2012, 33, 378–455. [Google Scholar] [CrossRef]
- Contaminant Candidate List (CCL) and Regulatory Determination. Chemical Contaminants—CCL 4. Available online: https://www.epa.gov/ccl/chemical-contaminants-ccl-4 (accessed on 10 April 2020).
- Ji, K.; Liu, X.; Lee, S.; Kang, S.; Kho, Y.; Giesy, J.P.; Choi, K. Effects of non-steroidal anti-inflammatory drugs on hormones and genes of the hypothalamic-pituitary-gonad axis, and reproduction of zebrafish. J. Hazard. Mater. 2013, 254–255, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rey, M.; Bebianno, M.J. Effects of non-steroidal anti-inflammatory drug (NSAID) diclofenac exposure in mussel Mytilus galloprovincialis. Aquat. Toxicol. 2014, 148, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rey, M.; Bebianno, M.J. Does selective serotonin reuptake inhibitor (SSRI) fluoxetine affects mussel Mytilus galloprovincialis? Environ. Pollut. 2013, 173, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Marti, E.; Variatza, E.; Balcazar, J.L. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 2014, 22, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Heys, K.A.; Shore, R.F.; Pereira, M.G.; Jones, K.C.; Martin, F.L. Risk assessment of environmental mixture effects. RSC Adv. 2016, 6, 47844–47857. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Tamura, I.; Abe, R.; Takanobu, H.; Nakamura, A.; Suzuki, T.; Hirose, A.; Nishimura, T.; Tatarazako, N. Chronic toxicity of an environmentally relevant mixture of pharmaceuticals to three aquatic organisms (alga, daphnid, and fish). Environ. Toxicol. Chem. 2016, 35, 996–1006. [Google Scholar] [CrossRef]
- Dietrich, S.; Ploessl, F.; Bracher, F.; Laforsch, C. Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in Daphnia magna—A multigenerational study. Chemosphere 2010, 79, 60–66. [Google Scholar] [CrossRef]
- Petrovic, M.; Farré, M.; de Alda, M.L.; Perez, S.; Postigo, C.; Köck, M.; Radjenovic, J.; Gros, M.; Barcelo, D. Recent trends in the liquid chromatography–mass spectrometry analysis of organic contaminants in environmental samples. J. Chromatogr. A 2010, 1217, 4004–4017. [Google Scholar] [CrossRef]
- Larivière, A.; Lissalde, S.; Soubrand, M.; Casellas-Français, M. Overview of Multiresidues Analytical Methods for the Quantitation of Pharmaceuticals in Environmental Solid Matrixes: Comparison of Analytical Development Strategy for Sewage Sludge, Manure, Soil, and Sediment Samples. Anal. Chem. 2017, 89, 453–465. [Google Scholar] [CrossRef]
- Valera, E.; Babington, R.; Broto, M.; Petanas, S.; Galve, R.; Marco, M.-P. Chapter 7—Application of Bioassays/Biosensors for the Analysis of Pharmaceuticals in Environmental Samples. In Comprehensive Analytical Chemistry; Petrovic, M., Barcelo, D., Pérez, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 62, pp. 195–229. [Google Scholar]
- Ejeian, F.; Etedali, P.; Mansouri-Tehrani, H.-A.; Soozanipour, A.; Low, Z.-X.; Asadnia, M.; Taheri-Kafrani, A.; Razmjou, A. Biosensors for wastewater monitoring: A review. Biosens. Bioelectron. 2018, 118, 66–79. [Google Scholar] [CrossRef]
- Suzuki, H. Advances in the Microfabrication of Electrochemical Sensors and Systems. Electroanalysis 2000, 12, 703–715. [Google Scholar] [CrossRef]
- Zimmerman, W.B. Electrochemical microfluidics. Chem. Eng. Sci. 2011, 66, 1412–1425. [Google Scholar] [CrossRef]
- Lowe, C.R. Biosensors. Trends Biotechnol. 1984, 2, 59–65. [Google Scholar] [CrossRef]
- Fabry, P.; Siebert, E. Electrochemical sensors. In the CRC Handbook of Solid State Electrochemistry; Gellings, P.J., Bouwmeester, H.J.M., Eds.; CRC: Boca Raton, FL, USA, 1997; pp. 269–329. [Google Scholar]
- Dresselhaus, M.S.; Dresselhaus, G.; Eklund, P.C. Science of Fullerenes and Carbon Nanotubes; Academic Press: San Diego, CA, USA, 1996. [Google Scholar]
- Dai, H.; Wong, E.W.; Lieber, C.M. Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes. Science 1996, 272, 523–526. [Google Scholar] [CrossRef]
- Wu, W.; Krishnan, S.; Yamada, T.; Sun, X.; Wilhite, P.; Wu, R.; Li, K.; Yang, C.Y. Contact resistance in carbon nanostructure via interconnects. Appl. Phys. Lett. 2009, 94, 163113. [Google Scholar] [CrossRef]
- Hanrahan, G.; Patil, D.G.; Wang, J. Electrochemical sensors for environmental monitoring: Design, development and applications. J. Environ. Monit. 2004, 6, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Kurbanoglu, S.; Ozkan, S.A. Electrochemical carbon based nanosensors: A promising tool in pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal. 2018, 147, 439–457. [Google Scholar] [CrossRef]
- Oliveira, T.M.B.F.; Morais, S. New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes. Appl. Sci. 2018, 8, 1925. [Google Scholar] [CrossRef] [Green Version]
- Feier, B.; Florea, A.; Cristea, C.; Săndulescu, R. Electrochemical detection and removal of pharmaceuticals in waste waters. Curr. Opin. Electrochem. 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Fiel, W.; Borges, P.; Lins, V.; Faria, R. Recent advances on the electrochemical transduction techniques for the biosensing of pharmaceuticals in aquatic environments. Int. J. Biosen. Bioelectron. 2019, 5, 119–123. [Google Scholar] [CrossRef]
- Álvarez-Muñoz, D.; Rodríguez-Mozaz, S.; Maulvault, A.L.; Tediosi, A.; Fernández-Tejedor, M.; Van den Heuvel, F.; Kotterman, M.; Marques, A.; Barceló, D. Occurrence of pharmaceuticals and endocrine disrupting compounds in macroalgaes, bivalves, and fish from coastal areas in Europe. Environ. Res. 2015, 143, 56–64. [Google Scholar] [CrossRef]
- Moreno-González, R.; Rodríguez-Mozaz, S.; Huerta, B.; Barceló, D.; León, V.M. Do pharmaceuticals bioaccumulate in marine molluscs and fish from a coastal lagoon? Environ. Res. 2016, 146, 282–298. [Google Scholar] [CrossRef] [PubMed]
- Núñez, M.; Borrull, F.; Pocurull, E.; Fontanals, N. Pressurized liquid extraction followed by liquid chromatography with tandem mass spectrometry to determine pharmaceuticals in mussels. J. Sep. Sci. 2016, 39, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Valdés, M.E.; Huerta, B.; Wunderlin, D.A.; Bistoni, M.A.; Barceló, D.; Rodriguez-Mozaz, S. Bioaccumulation and bioconcentration of carbamazepine and other pharmaceuticals in fish under field and controlled laboratory experiments. Evidences of carbamazepine metabolization by fish. Sci. Total Environ. 2016, 557–558, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.J.G.; Pereira, A.M.P.T.; Rodrigues, H.; Meisel, L.M.; Lino, C.M.; Pena, A. SSRIs antidepressants in marine mussels from Atlantic coastal areas and human risk assessment. Sci. Total Environ. 2017, 603–604, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.C.; Pena, A.; Fernandes, J.O. Mussels as bioindicators of diclofenac contamination in coastal environments. Environ. Pollut. 2017, 225, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Muñoz, D.; Rodríguez-Mozaz, S.; Jacobs, S.; Serra-Compte, A.; Cáceres, N.; Sioen, I.; Verbeke, W.; Barbosa, V.; Ferrari, F.; Fernández-Tejedor, M.; et al. Pharmaceuticals and endocrine disruptors in raw and cooked seafood from European market: Concentrations and human exposure levels. Environ. Int. 2018, 119, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, L.M.; Nobile, M.; Malandra, R.; Panseri, S.; Arioli, F. Occurrence of antibiotics in mussels and clams from various FAO areas. Food Chem. 2018, 240, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Kazakova, J.; Fernández-Torres, R.; Ramos-Payán, M.; Bello-López, M.Á. Multiresidue determination of 21 pharmaceuticals in crayfish (Procambarus clarkii) using enzymatic microwave-assisted liquid extraction and ultrahigh-performance liquid chromatography-triple quadrupole mass spectrometry analysis. J. Pharm. Biomed. Anal. 2018, 160, 144–151. [Google Scholar] [CrossRef]
- Kong, C.; Wang, Y.; Huang, Y.; Yu, H. Multiclass screening of >200 pharmaceutical and other residues in aquatic foods by ultrahigh-performance liquid chromatography–quadrupole-Orbitrap mass spectrometry. Anal. Bioanal. Chem. 2018, 410, 5545–5553. [Google Scholar] [CrossRef]
- Nödler, K.; Licha, T.; Bester, K.; Sauter, M. Development of a multi-residue analytical method, based on liquid chromatography–tandem mass spectrometry, for the simultaneous determination of 46 micro-contaminants in aqueous samples. J. Chromatogr. A 2010, 1217, 6511–6521. [Google Scholar] [CrossRef] [PubMed]
- Madureira, T.V.; Barreiro, J.C.; Rocha, M.J.; Rocha, E.; Cass, Q.B.; Tiritan, M.E. Spatiotemporal distribution of pharmaceuticals in the Douro River estuary (Portugal). Sci. Total Environ. 2010, 408, 5513–5520. [Google Scholar] [CrossRef] [PubMed]
- Lolić, A.; Paíga, P.; Santos, L.H.M.L.M.; Ramos, S.; Correia, M.; Delerue-Matos, C. Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of North of Portugal: Occurrence and environmental risk. Sci. Total Environ. 2015, 508, 240–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alygizakis, N.A.; Gago-Ferrero, P.; Borova, V.L.; Pavlidou, A.; Hatzianestis, I.; Thomaidis, N.S. Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater. Sci. Total Environ. 2016, 541, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Medicine and Healthcare Products Statistics; INFARMED: Lisboa, Portugal, 2014.
- The Top 300 of 2019. Available online: https://clincalc.com/DrugStats/Top300Drugs.aspx (accessed on 20 December 2019).
- Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Favero, G.; Gorton, L.; Antiochia, R. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron. 2017, 89, 152–166. [Google Scholar] [CrossRef]
- Saleh, T.A.; Fadillah, G. Recent trends in the design of chemical sensors based on graphene–metal oxide nanocomposites for the analysis of toxic species and biomolecules. TrAC Trends Anal. Chem. 2019, 120, 115660. [Google Scholar] [CrossRef]
- Lima, H.R.S.; da Silva, J.S.; de Oliveira Farias, E.A.; Teixeira, P.R.S.; Eiras, C.; Nunes, L.; César, C. Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosens. Bioelectron. 2018, 108, 27–37. [Google Scholar] [CrossRef]
- Chen, H.; Bo, L.; He, M.; Mi, G.; Li, J. Synthesis and Application of Graphene–Sodium Polyacrylate–Pd Nanocomposite in Amperometric Determination of Ciprofloxacin. Chem. Lett. 2015, 44, 815–817. [Google Scholar] [CrossRef]
- Silva, M.; Cesarino, I. Evaluation of a Nanocomposite Based on Reduced Graphene Oxide and Gold Nanoparticles as an Electrochemical Platform for Detection of Sulfamethazine. J. Compos. Sci. 2019, 3, 59. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Evans, J.R.G.; Greenwell, H.C.; Boulet, P.; Coveney, P.V.; Bowden, A.A.; Whiting, A. A critical appraisal of polymer–clay nanocomposites. Chem. Soc. Rev. 2008, 37, 568–594. [Google Scholar] [CrossRef] [PubMed]
- Work, W.; Horie, K.; Hess, M.; Stepto, R. Definition of terms related to polymer blends, composites, and multiphase polymeric materials (IUPAC Recommendations 2004). Pure Appl. Chem. 2004, 76, 1985–2007. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.-C.; Hong, Y.-T.; Lee, T.-W.; Huang, J.-F. Facile fabrication of ascorbic acid reduced graphene oxide-modified electrodes toward electroanalytical determination of sulfamethoxazole in aqueous environments. Chem. Eng. J. 2018, 352, 188–197. [Google Scholar] [CrossRef]
- Lorenzetti, A.S.; Sierra, T.; Domini, C.E.; Lista, A.G.; Crevillen, A.G.; Escarpa, A. Electrochemically Reduced Graphene Oxide-Based Screen-Printed Electrodes for Total Tetracycline Determination by Adsorptive Transfer Stripping Differential Pulse Voltammetry. Sensors 2019, 20, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.-M.; Ji, Z.; Xiong, M.-X.; Chen, W. The Electrochemical Sensor for the Determination of Tetracycline Based on Graphene /L-Cysteine Composite Film. J. Electrochem. Soc. 2017, 164, B107–B112. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Li, C.; Tang, L.; Zhang, Z.; Yang, M. A novel composite film derived from cysteic acid and PDDA-functionalized graphene: Enhanced sensing material for electrochemical determination of metronidazole. Talanta 2013, 104, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zheng, B.; Zhang, T.; Zhao, J.; Gu, Y.; Yan, X.; Li, Y.; Liu, W.; Feng, G.; Zhang, Z. Petal-like graphene–Ag composites with highly exposed active edge sites were designed and constructed for electrochemical determination of metronidazole. RSC Adv. 2016, 6, 45202–45209. [Google Scholar] [CrossRef]
- Yang, M.; Guo, M.; Feng, Y.; Lei, Y.; Cao, Y.; Zhu, D.; Yu, Y.; Ding, L. Sensitive Voltammetric Detection of Metronidazole Based on Three-Dimensional Graphene-Like Carbon Architecture/Polythionine Modified Glassy Carbon Electrode. J. Electrochem. Soc. 2018, 165, B530–B535. [Google Scholar] [CrossRef]
- Zheng, B.; Li, C.; Wang, L.; Li, Y.; Gu, Y.; Yan, X.; Zhang, T.; Zhang, Z.; Zhai, S. Signal amplification biosensor based on DNA for ultrasensitive electrochemical determination of metronidazole. RSC Adv. 2016, 6, 61207–61213. [Google Scholar] [CrossRef]
- Zhai, H.; Liang, Z.; Chen, Z.; Wang, H.; Liu, Z.; Su, Z.; Zhou, Q. Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode. Electrochim. Acta 2015, 171, 105–113. [Google Scholar] [CrossRef]
- Prado, T.M.d.; Cincotto, F.H.; Machado, S.A.S. Spectroelectrochemical study of acetylsalicylic acid in neutral medium and its quantification in clinical and environmental samples. Electrochim. Acta 2017, 233, 105–112. [Google Scholar] [CrossRef]
- Dhanalakshmi, N.; Priya, T.; Thennarasu, S.; Sivanesan, S.; Thinakaran, N. Synthesis and electrochemical properties of environmental free l-glutathione grafted graphene oxide/ZnO nanocomposite for highly selective piroxicam sensing. J. Pharm. Anal. 2020. [Google Scholar] [CrossRef]
- Okoth, O.K.; Yan, K.; Liu, L.; Zhang, J. Simultaneous Electrochemical Determination of Paracetamol and Diclofenac Based on Poly(diallyldimethylammonium chloride) Functionalized Graphene. Electroanalysis 2016, 28, 76–82. [Google Scholar] [CrossRef]
- Okoth, O.K.; Yan, K.; Feng, J.; Zhang, J. Label-free photoelectrochemical aptasensing of diclofenac based on gold nanoparticles and graphene-doped CdS. Sens. Actuators B 2018, 256, 334–341. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, X.; Li, P.; Huang, Y.; Wang, J.; Zhang, J. Highly sensitive Fe3O4 nanobeads/graphene-based molecularly imprinted electrochemical sensor for 17β-estradiol in water. Anal. Chim. Acta 2015, 884, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Moraes, F.C.; Rossi, B.; Donatoni, M.C.; de Oliveira, K.T.; Pereira, E.C. Sensitive determination of 17β-estradiol in river water using a graphene based electrochemical sensor. Anal. Chim. Acta 2015, 881, 37–43. [Google Scholar] [CrossRef]
- Liu, M.; Ke, H.; Sun, C.; Wang, G.; Wang, Y.; Zhao, G. A simple and highly selective electrochemical label-free aptasensor of 17β-estradiol based on signal amplification of bi-functional graphene. Talanta 2019, 194, 266–272. [Google Scholar] [CrossRef]
- Li, J.; Liu, S.; Yu, J.; Lian, W.; Cui, M.; Xu, W.; Huang, J. Electrochemical immunosensor based on graphene–polyaniline composites and carboxylated graphene oxide for estradiol detection. Sens. Actuators B 2013, 188, 99–105. [Google Scholar] [CrossRef]
- Hu, L.; Cheng, Q.; Chen, D.; Ma, M.; Wu, K. Liquid-phase exfoliated graphene as highly-sensitive sensor for simultaneous determination of endocrine disruptors: Diethylstilbestrol and estradiol. J Hazard. Mater. 2015, 283, 157–163. [Google Scholar] [CrossRef]
- Gevaerd, A.; Banks, C.E.; Bergamini, M.F.; Marcolino-Junior, L.H. Graphene Quantum Dots Modified Screen-printed Electrodes as Electroanalytical Sensing Platform for Diethylstilbestrol. Electroanalysis 2019, 31, 838–843. [Google Scholar] [CrossRef]
- Scala-Benuzzi, M.L.; Raba, J.; Soler-Illia, G.J.A.A.; Schneider, R.J.; Messina, G.A. Novel Electrochemical Paper-Based Immunocapture Assay for the Quantitative Determination of Ethinylestradiol in Water Samples. Anal. Chem. 2018, 90, 4104–4111. [Google Scholar] [CrossRef] [Green Version]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing. Nanomaterials 2019, 9, 634. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016, 6, 36143. [Google Scholar] [CrossRef] [Green Version]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R. Physics of carbon nanotubes. Carbon 1995, 33, 883–891. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Ren, Z.; Chou, T.-W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef] [Green Version]
- Iijima, S. Carbon nanotubes: Past, present, and future. Physica B 2002, 323, 1–5. [Google Scholar] [CrossRef]
- Britto, P.J.; Santhanam, K.S.V.; Rubio, A.; Alonso, J.A.; Ajayan, P.M. Improved Charge Transfer at Carbon Nanotube Electrodes. Adv. Mater. 1999, 11, 154–157. [Google Scholar] [CrossRef]
- Banks, C.E.; Davies, T.J.; Wildgoose, G.G.; Compton, R.G. Electrocatalysis at graphite and carbon nanotube modified electrodes: Edge-plane sites and tube ends are the reactive sites. Chem. Commun. 2005, 829–841. [Google Scholar] [CrossRef]
- Banks, C.E.; Crossley, A.; Salter, C.; Wilkins, S.J.; Compton, R.G. Carbon Nanotubes Contain Metal Impurities Which Are Responsible for the “Electrocatalysis” Seen at Some Nanotube-Modified Electrodes. Angew. Chem. Int. Ed. 2006, 45, 2533–2537. [Google Scholar] [CrossRef] [PubMed]
- Rivas, G.A.; Rubianes, M.D.; Rodríguez, M.C.; Ferreyra, N.F.; Luque, G.L.; Pedano, M.L.; Miscoria, S.A.; Parrado, C. Carbon nanotubes for electrochemical biosensing. Talanta 2007, 74, 291–307. [Google Scholar] [CrossRef]
- Agüí, L.; Yáñez-Sedeño, P.; Pingarrón, J.M. Role of carbon nanotubes in electroanalytical chemistry: A review. Anal. Chim. Acta 2008, 622, 11–47. [Google Scholar] [CrossRef]
- Vashist, S.K.; Zheng, D.; Al-Rubeaan, K.; Luong, J.H.T.; Sheu, F.-S. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol. Adv. 2011, 29, 169–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carneiro, P.; Morais, S.; Pereira, M.C. Nanomaterials towards Biosensing of Alzheimer’s Disease Biomarkers. Nanomaterials 2019, 9, 1663. [Google Scholar] [CrossRef] [Green Version]
- Gomes, F.O.; Maia, L.B.; Delerue-Matos, C.; Moura, I.; Moura, J.J.G.; Morais, S. Third-generation electrochemical biosensor based on nitric oxide reductase immobilized in a multiwalled carbon nanotubes/1-n-butyl-3-methylimidazolium tetrafluoroborate nanocomposite for nitric oxide detection. Sens. Actuators B 2019, 285, 445–452. [Google Scholar] [CrossRef]
- Martínez, N.A.; Pereira, S.V.; Bertolino, F.A.; Schneider, R.J.; Messina, G.A.; Raba, J. Electrochemical detection of a powerful estrogenic endocrine disruptor: Ethinylestradiol in water samples through bioseparation procedure. Anal. Chim. Acta 2012, 723, 27–32. [Google Scholar] [CrossRef]
- Nodehi, M.; Baghayeri, M.; Ansari, R.; Veisi, H. Electrochemical quantification of 17α—Ethinylestradiol in biological samples using a Au/Fe3O4@TA/MWNT/GCE sensor. Mater. Chem. Phys. 2020, 244, 122687. [Google Scholar] [CrossRef]
- Liu, X.; Feng, H.; Liu, X.; Wong, D.K.Y. Electrocatalytic detection of phenolic estrogenic compounds at NiTPPS|carbon nanotube composite electrodes. Anal. Chim. Acta 2011, 689, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Biesaga, M.; Pyrzyńska, K.; Trojanowicz, M. Porphyrins in analytical chemistry. A review. Talanta 2000, 51, 209–224. [Google Scholar] [CrossRef]
- Karla Lombello Coelho, M.; Nunes da Silva, D.; César Pereira, A. Development of Electrochemical Sensor Based on Carbonaceal and Metal Phthalocyanines Materials for Determination of Ethinyl Estradiol. Chemosensors 2019, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Daneshvar, L.; Rounaghi, G.H.; Tarahomi, S. Voltammetric paracetamol sensor using a gold electrode made from a digital versatile disc chip and modified with a hybrid material consisting of carbon nanotubes and copper nanoparticles. Microchim. Acta 2016, 183, 3001–3007. [Google Scholar] [CrossRef]
- Gorla, F.A.; Duarte, E.H.; Sartori, E.R.; Tarley, C.R.T. Electrochemical study for the simultaneous determination of phenolic compounds and emerging pollutant using an electroanalytical sensing system based on carbon nanotubes/surfactant and multivariate approach in the optimization. Microchem. J. 2016, 124, 65–75. [Google Scholar] [CrossRef]
- Shi, P.; Xue, R.; Wei, Y.; Lei, X.; Ai, J.; Wang, T.; Shi, Z.; Wang, X.; Wang, Q.; Mohammed Soliman, F.; et al. Gold nanoparticles/tetraaminophenyl porphyrin functionalized multiwalled carbon nanotubes nanocomposites modified glassy carbon electrode for the simultaneous determination of p-acetaminophen and p-aminophenol. Arabian J. Chem. 2020, 13, 1040–1051. [Google Scholar] [CrossRef]
- Gayen, P.; Chaplin, B.P. Selective Electrochemical Detection of Ciprofloxacin with a Porous Nafion/Multiwalled Carbon Nanotube Composite Film Electrode. ACS Appl. Mater. Interfaces 2016, 8, 1615–1626. [Google Scholar] [CrossRef]
- Garrido, J.M.P.J.; Melle-Franco, M.; Strutyński, K.; Borges, F.; Brett, C.M.A.; Garrido, E.M.P.J. β–Cyclodextrin carbon nanotube-enhanced sensor for ciprofloxacin detection. J. Environ. Sci. Health Part A 2017, 52, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Zerkoune, L.; Angelova, A.; Lesieur, S. Nano-Assemblies of Modified Cyclodextrins and Their Complexes with Guest Molecules: Incorporation in Nanostructured Membranes and Amphiphile Nanoarchitectonics Design. Nanomaterials 2014, 4, 741–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvand, M.; Gholizadeh, T.M.; Zanjanchi, M.A. MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mater. Sci. Eng. C 2012, 32, 1682–1689. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zheng, J.; Zhao, K.; Deng, A.; Li, J. An ultrasensitive electrochemiluminescent immunosensor based on graphene oxide coupled graphite-like carbon nitride and multiwalled carbon nanotubes-gold for the detection of diclofenac. Biosens. Bioelectron. 2018, 101, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, F.; Rounaghi, G.H.; Ashraf, N.; Deiminiat, B. A new electrochemical sensing platform for quantitative determination of diclofenac based on gold nanoparticles decorated multiwalled carbon nanotubes/graphene oxide nanocomposite film. Int. J. Environ. Anal. Chem. 2019, 1–14. [Google Scholar] [CrossRef]
- Roushani, M.; Shahdost-fard, F. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: Fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor. Mater. Sci. Eng. C 2016, 68, 128–135. [Google Scholar] [CrossRef]
- Iacob, A.; Manea, F.; Schoonman, J.; Vaszilcsin, N. Voltammetric/amperometric detection of salicylic acid in water on carbon nanotubes-epoxy composite electrodes. WIT Trans. Built Environ. 2015, 168, 543–553. [Google Scholar]
- Vega, D.; Agüí, L.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Anal. Bioanal. Chem. 2007, 389, 951–958. [Google Scholar] [CrossRef]
- Nagles, E.; Alvarez, P.; Arancibia, V.; Baez, M.; Garreton, V.; Ehrenfeld, N. Amperometric and voltammetric determination of oxytetracycline in trout salmonid muscle using multi-wall carbon nanotube, ionic liquid and gold nanoparticle film electrodes. Int. J. Electrochem. Sci 2012, 7, 11745–11757. [Google Scholar]
- Yuan, L.; Jiang, L.; Hui, T.; Jie, L.; Bingbin, X.; Feng, Y.; Yingchun, L. Fabrication of highly sensitive and selective electrochemical sensor by using optimized molecularly imprinted polymers on multi-walled carbon nanotubes for metronidazole measurement. Sens. Actuators B 2015, 206, 647–652. [Google Scholar] [CrossRef]
- Bueno, A.M.; Contento, A.M.; Ríos, Á. Validation of a screening method for the rapid control of sulfonamide residues based on electrochemical detection using multiwalled carbon nanotubes-glassy carbon electrodes. Anal. Methods 2013, 5, 6821–6829. [Google Scholar] [CrossRef]
- Cesarino, I.; Cesarino, V.; Lanza, M.R.V. Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: Simultaneous determination of sulfamethoxazole and trimethoprim. Sens. Actuators B 2013, 188, 1293–1299. [Google Scholar] [CrossRef]
- Yang, M.; Wu, X.; Hu, X.; Wang, K.; Zhang, C.; Gyimah, E.; Yakubu, S.; Zhang, Z. Electrochemical immunosensor based on Ag+-dependent CTAB-AuNPs for ultrasensitive detection of sulfamethazine. Biosens. Bioelectron. 2019, 144, 111643. [Google Scholar] [CrossRef]
- Canevari, T.C.; Cincotto, F.H.; Nakamura, M.; Machado, S.A.S.; Toma, H.E. Efficient electrochemical biosensors for ethynylestradiol based on the laccase enzyme supported on single walled carbon nanotubes decorated with nanocrystalline carbon quantum dots. Anal. Methods 2016, 8, 7254–7259. [Google Scholar] [CrossRef]
- Aragão, J.S.; Ribeiro, F.W.P.; Portela, R.R.; Santos, V.N.; Sousa, C.P.; Becker, H.; Correia, A.N.; de Lima-Neto, P. Electrochemical determination diethylstilbestrol by a multi-walled carbon nanotube/cobalt phthalocyanine film electrode. Sens. Actuators B 2017, 239, 933–942. [Google Scholar] [CrossRef]
- Duan, D.; Si, X.; Ding, Y.; Li, L.; Ma, G.; Zhang, L.; Jian, B. A novel molecularly imprinted electrochemical sensor based on double sensitization by MOF/CNTs and Prussian blue for detection of 17β-estradiol. Bioelectrochemistry 2019, 129, 211–217. [Google Scholar] [CrossRef]
- Veiga, A.; Dordio, A.; Carvalho, A.J.P.; Teixeira, D.M.; Teixeira, J.G. Ultra-sensitive voltammetric sensor for trace analysis of carbamazepine. Anal. Chim. Acta 2010, 674, 182–189. [Google Scholar] [CrossRef]
- Deng, K.; Liu, X.; Li, C.; Hou, Z.; Huang, H. An electrochemical omeprazole sensor based on shortened multi-walled carbon nanotubes-Fe3O4 nanoparticles and poly(2, 6-pyridinedicarboxylic acid). Sens. Actuators B 2017, 253, 1–9. [Google Scholar] [CrossRef]
- Chen, L.; Li, K.; Zhu, H.; Meng, L.; Chen, J.; Li, M.; Zhu, Z. A chiral electrochemical sensor for propranolol based on multi-walled carbon nanotubes/ionic liquids nanocomposite. Talanta 2013, 105, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Hemasa, A.L.; Naumovski, N.; Maher, W.A.; Ghanem, A. Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals. Nanomaterials 2017, 7, 186. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Musameh, M.; Lin, Y. Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors. J. Am. Chem. Soc. 2003, 125, 2408–2409. [Google Scholar] [CrossRef] [PubMed]
- Tkac, J.; Ruzgas, T. Dispersion of single walled carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detection. Electrochem. Commun. 2006, 8, 899–903. [Google Scholar] [CrossRef]
- Donnet, J.-B.; Bansal, R.C.; Wang, M.-J. Carbon Black: Science and Technology; Marcel Dekker, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Sun, J.; Gan, T.; Meng, W.; Shi, Z.; Zhang, Z.; Liu, Y. Determination of Oxytetracycline in Food Using a Disposable Montmorillonite and Acetylene Black Modified Microelectrode. Anal. Lett. 2015, 48, 100–115. [Google Scholar] [CrossRef]
- Delgado, K.P.; Raymundo-Pereira, P.A.; Campos, A.M.; Oliveira, O.N., Jr.; Janegitz, B.C. Ultralow Cost Electrochemical Sensor Made of Potato Starch and Carbon Black Nanoballs to Detect Tetracycline in Waters and Milk. Electroanalysis 2018, 30, 2153–2159. [Google Scholar] [CrossRef]
- Guaraldo, T.T.; Goulart, L.A.; Moraes, F.C.; Lanza, M.R.V. Carbon black nanospheres modified with Cu (II)-phthalocyanine for electrochemical determination of Trimethoprim antibiotic. Appl. Surf. Sci. 2019, 470, 555–564. [Google Scholar] [CrossRef]
- Deroco, P.B.; Rocha-Filho, R.C.; Fatibello-Filho, O. A new and simple method for the simultaneous determination of amoxicillin and nimesulide using carbon black within a dihexadecylphosphate film as electrochemical sensor. Talanta 2018, 179, 115–123. [Google Scholar] [CrossRef]
- Deroco, P.B.; Fatibello-Filho, O.; Arduini, F.; Moscone, D. Effect of Different Carbon Blacks on the Simultaneous Electroanalysis of Drugs as Water Contaminants Based on Screen-printed Sensors. Electroanalysis 2019, 31, 2145–2154. [Google Scholar] [CrossRef]
- Wong, A.; Santos, A.M.; Fatibello-Filho, O. Simultaneous determination of paracetamol and levofloxacin using a glassy carbon electrode modified with carbon black, silver nanoparticles and PEDOT:PSS film. Sens. Actuators B 2018, 255, 2264–2273. [Google Scholar] [CrossRef]
- Machini, W.B.S.; Fernandes, I.P.G.; Oliveira-Brett, A.M. Antidiabetic Drug Metformin Oxidation and in situ Interaction with dsDNA Using a dsDNA-electrochemical Biosensor. Electroanalysis 2019, 31, 1977–1987. [Google Scholar] [CrossRef]
- Qu, K.; Zhang, X.; Lv, Z.; Li, M.; Cui, Z.; Zhang, Y.; Chen, B.; Ma, S.; Kong, Q. Simultaneous detection of diethylstilbestrol and malachite green using conductive carbon black paste electrode. Int. J. Electrochem. Sci 2012, 7, 1827–1839. [Google Scholar]
- Pollap, A.; Knihnicki, P.; Kuśtrowski, P.; Kozak, J.; Gołda-Cępa, M.; Kotarba, A.; Kochana, J. Sensitive Voltammetric Amoxicillin Sensor Based on TiO2 Sol Modified by CMK-3-type Mesoporous Carbon and Gold Ganoparticles. Electroanalysis 2018, 30, 2386–2396. [Google Scholar] [CrossRef]
- Kalate Bojdi, M.; Behbahani, M.; Mashhadizadeh, M.H.; Bagheri, A.; Hosseiny Davarani, S.S.; Farahani, A. Mercapto-ordered carbohydrate-derived porous carbon electrode as a novel electrochemical sensor for simple and sensitive ultra-trace detection of omeprazole in biological samples. Mater. Sci. Eng. C 2015, 48, 213–219. [Google Scholar] [CrossRef]
- Ait Lahcen, A.; Ait Errayess, S.; Amine, A. Voltammetric determination of sulfonamides using paste electrodes based on various carbon nanomaterials. Microchim. Acta 2016, 183, 2169–2176. [Google Scholar] [CrossRef]
- Dong, X.; He, L.; Liu, Y.; Piao, Y. Preparation of highly conductive biochar nanoparticles for rapid and sensitive detection of 17β-estradiol in water. Electrochim. Acta 2018, 292, 55–62. [Google Scholar] [CrossRef]
- Santos, A.M.; Wong, A.; Vicentini, F.C.; Fatibello-Filho, O. Simultaneous voltammetric sensing of levodopa, piroxicam, ofloxacin and methocarbamol using a carbon paste electrode modified with graphite oxide and β-cyclodextrin. Microchim. Acta 2019, 186, 174. [Google Scholar] [CrossRef] [PubMed]
- Motoc, S.; Manea, F.; Orha, C.; Pop, A. Enhanced Electrochemical Response of Diclofenac at a Fullerene–Carbon Nanofiber Paste Electrode. Sensors 2019, 19, 1332. [Google Scholar] [CrossRef] [Green Version]
- Eftekhari, A.; Fan, Z. Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Mater. Chem. Front. 2017, 1, 1001–1027. [Google Scholar] [CrossRef]
- Serrano, N.; Castilla, Ò.; Ariño, C.; Diaz-Cruz, M.S.; Díaz-Cruz, J.M. Commercial Screen-Printed Electrodes Based on Carbon Nanomaterials for a Fast and Cost-Effective Voltammetric Determination of Paracetamol, Ibuprofen and Caffeine in Water Samples. Sensors 2019, 19, 4039. [Google Scholar] [CrossRef] [Green Version]
- Dhar, D.; Roy, S.; Nigam, V.K. Chapter 10—Advances in protein/enzyme-based biosensors for the detection of pharmaceutical contaminants in the environment. In Tools, Techniques and Protocols for Monitoring Environmental Contaminants; Kaur Brar, S., Hegde, K., Pachapur, V.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 207–229. [Google Scholar] [CrossRef]
- Liu, J.; Rinzler, A.G.; Dai, H.; Hafner, J.H.; Bradley, R.K.; Boul, P.J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C.B.; et al. Fullerene Pipes. Science 1998, 280, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Ding, Y.; Ji, Y.; Xu, J.; Hu, S. Fabrication of thin-film electrochemical sensors from single-walled carbon nanotubes by vacuum filtration. Carbon 2010, 48, 1345–1352. [Google Scholar] [CrossRef]
- Vallés, C.; David Núñez, J.; Benito, A.M.; Maser, W.K. Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper. Carbon 2012, 50, 835–844. [Google Scholar] [CrossRef] [Green Version]
- Martín, A.; Escarpa, A. Tailor designed exclusive carbon nanomaterial electrodes for off-chip and on-chip electrochemical detection. Microchim. Acta 2017, 184, 307–313. [Google Scholar] [CrossRef]
- Torrinha, Á.; Montenegro, M.C.B.S.M.; Araújo, A.N. Conjugation of glucose oxidase and bilirubin oxidase bioelectrodes as biofuel cell in a finger-powered microfluidic platform. Electrochim. Acta 2019, 318, 922–930. [Google Scholar] [CrossRef]
- Chen, M.; Qin, X.; Zeng, G. Biodegradation of Carbon Nanotubes, Graphene, and Their Derivatives. Trends Biotechnol. 2017, 35, 836–846. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrinha, Á.; Oliveira, T.M.B.F.; Ribeiro, F.W.P.; Correia, A.N.; Lima-Neto, P.; Morais, S. Application of Nanostructured Carbon-Based Electrochemical (Bio)Sensors for Screening of Emerging Pharmaceutical Pollutants in Waters and Aquatic Species: A Review. Nanomaterials 2020, 10, 1268. https://doi.org/10.3390/nano10071268
Torrinha Á, Oliveira TMBF, Ribeiro FWP, Correia AN, Lima-Neto P, Morais S. Application of Nanostructured Carbon-Based Electrochemical (Bio)Sensors for Screening of Emerging Pharmaceutical Pollutants in Waters and Aquatic Species: A Review. Nanomaterials. 2020; 10(7):1268. https://doi.org/10.3390/nano10071268
Chicago/Turabian StyleTorrinha, Álvaro, Thiago M. B. F. Oliveira, Francisco W.P. Ribeiro, Adriana N. Correia, Pedro Lima-Neto, and Simone Morais. 2020. "Application of Nanostructured Carbon-Based Electrochemical (Bio)Sensors for Screening of Emerging Pharmaceutical Pollutants in Waters and Aquatic Species: A Review" Nanomaterials 10, no. 7: 1268. https://doi.org/10.3390/nano10071268
APA StyleTorrinha, Á., Oliveira, T. M. B. F., Ribeiro, F. W. P., Correia, A. N., Lima-Neto, P., & Morais, S. (2020). Application of Nanostructured Carbon-Based Electrochemical (Bio)Sensors for Screening of Emerging Pharmaceutical Pollutants in Waters and Aquatic Species: A Review. Nanomaterials, 10(7), 1268. https://doi.org/10.3390/nano10071268