A2AgCrBr6 (A = K, Rb, Cs) and Cs2AgCrX6(X = Cl, I) Double Perovskites: A Transition-Metal-Based Semiconducting Material Series with Remarkable Optics
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Geometrical Properties and Stability of Perovskite Structures
3.2. Density of States and Band Structures
3.3. Optical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matthews, P.D.; Lewis, D.J.; O’Brien, P. Updating the road map to metal-halide perovskites for photovoltaics. J. Mater. Chem. A 2017, 5, 17135–17150. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.; Ahmad, W.; Liu, W.; Yang, J.; Zhang, R.; Sun, Y.; Yang, J.; Li, X. Lead-Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications. Nano-Micro Lett. 2019, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Greul, E.; Petrus, M.L.; Binek, A.; Docampo, P.; Bein, T. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 2017, 5, 19972–19981. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Ju, M.-G.; Carl, A.D.; Zong, Y.; Grimm, R.L.; Gu, J.; Zeng, X.C.; Zhou, Y.; Padture, N.P. Cesium Titanium(IV) Bromide Thin Films Based Stable Lead-free Perovskite Solar Cells. Joule 2018, 2, 558–570. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.-Z.; Shi, Z.; Li, Y.; Ma, Z.Z.; Zhang, F.; Xu, T.; Tian, Y.-T.; Wu, D.; Li, X.; Du, G.-T. High-efficiency and air-stable photodetectors based on lead-free double perovskite Cs2AgBiBr6 thin films. J. Mater. Chem. C 2018, 6, 7982–7988. [Google Scholar] [CrossRef]
- Li, H.; Shan, X.; Neu, J.N.; Geske, T.; Davis, M.; Mao, P.; Xiao, K.; Siegrist, T.; Yu, Z. Lead-free halide double perovskite-polymer composites for flexible X-ray imaging. J. Mater. Chem. C 2018, 6, 11961–11967. [Google Scholar] [CrossRef]
- Tan, Z.; Li, J.; Zhang, C.; Li, Z.; Hu, Q.; Xiao, Z.; Kamiya, T.; Hosono, H.; Niu, G.; Lifshitz, E.; et al. Highly Efficient Blue-Emitting Bi-Doped Cs2SnCl6 Perovskite Variant: Photoluminescence Induced by Impurity Doping. Adv. Funct. Mater. 2018, 28, 1801131. [Google Scholar] [CrossRef]
- Luo, J.; Wang, X.; Li, S.; Liu, J.; Guo, Y.; Niu, G.; Yao, L.; Fu, Y.; Gao, L.; Dong, Q.; et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 2018, 563, 541–545. [Google Scholar] [CrossRef]
- Moser, F.; Lyu, S. Luminescence in pure and I-doped AgBr crystals. J. Lumin 1971, 3, 447–458. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Varadwaj, P. Methylammonium Lead Trihalide Perovskite Solar Cell Semiconductors Are Not Organometallic: A Perspective. Helvetica Chim. Acta 2017, 100, e1700090. [Google Scholar] [CrossRef]
- Varadwaj, P.R.; Varadwaj, A.; Marques, H.M.; Yamashita, K. Significance of hydrogen bonding and other noncovalent interactions in determining octahedral tilting in the CH3NH3PbI3 hybrid organic-inorganic halide perovskite solar cell semiconductor. Sci. Rep. 2019, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Varadwaj, A.; Varadwaj, P.; Marques, H.M.; Yamashita, K. Halogen in materials design: Revealing the nature of hydrogen bonding and other non-covalent interactions in the polymorphic transformations of methylammonium lead tribromide perovskite. Mater. Today Chem. 2018, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Varadwaj, P.R.; Varadwaj, A.; Marques, H.M.; Yamashita, K. Halogen in materials design: Chloroammonium lead triiodide perovskite (ClNH3PbI3) a dynamical bandgap semiconductor in 3D for photovoltaics. J. Comput. Chem. 2018, 39, 1902–1912. [Google Scholar] [CrossRef]
- Varadwaj, A.; Varadwaj, P.; Yamashita, K. Revealing the Cooperative Chemistry of the Organic Cation in the Methylammonium Lead Triiodide Perovskite Semiconductor System. ChemisrtySelect 2018, 3, 7269–7282. [Google Scholar] [CrossRef]
- Varadwaj, A.; Varadwaj, P.R.; Yamashita, K. Revealing the Chemistry between Band Gap and Binding Energy for Lead-/Tin-Based Trihalide Perovskite Solar Cell Semiconductors. ChemSusChem 2018, 11, 449–463. [Google Scholar] [CrossRef]
- Varadwaj, A.; Varadwaj, P.; Yamashita, K. Hybrid organic-inorganic CH3NH3PbI3 perovskite building blocks: Revealing ultra-strong hydrogen bonding and mulliken inner complexes and their implications in materials design. J. Comput. Chem. 2017, 38, 2802–2818. [Google Scholar] [CrossRef]
- Zhao, X.-G.; Yang, J.-H.; Fu, Y.; Yang, D.; Xu, Q.; Yu, L.; Wei, S.-H.; Zhang, L. Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation. J. Am. Chem. Soc. 2017, 139, 2630–2638. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.-G.; Yang, D.; Sun, Y.; Li, T.; Zhang, L.; Yu, L.; Zunger, A. Cu–In Halide Perovskite Solar Absorbers. J. Am. Chem. Soc. 2017, 139, 6718–6725. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Du, K.-Z.; Meng, W.; Wang, J.; Mitzi, D.B.; Yan, Y. Intrinsic Instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = Halogen) Double Perovskites: A Combined Density Functional Theory and Experimental Study. J. Am. Chem. Soc. 2017, 139, 6054–6057. [Google Scholar] [CrossRef]
- Li, T.; Zhao, X.; Yang, D.; Du, M.-H.; Zhang, L. Intrinsic Defect Properties in Halide Double Perovskites for Optoelectronic Applications. Phys. Rev. Appl. 2018, 10, 041001. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Yang, D.; Lv, J.; Sun, Y.-Y.; Zhang, L. Perovskite Solar Absorbers: Materials by Design. Small Methods 2018, 2, 1700316. [Google Scholar] [CrossRef]
- Zhou, Y.; Askar, A.M.; Pöhls, J.-H.; Iyer, A.K.; Oliynyk, A.O.; Shankar, K.; Mar, A. Hexagonal Double Perovskite Cs2AgCrCl6. Zeitschrift für anorganische und allgemeine Chemie 2018, 645, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Song, Z.; Zhao, J.; Liu, Q. Double perovskite Cs2AgInCl6:Cr3+: Broadband and near-infrared luminescent materials. Inorg. Chem. Front. 2019, 6, 3621–3628. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 25 April 2020).
- Bagnall, K.W.; Laidler, J.B.; Stewart, M.A.A. Americium chloro-complexes. J. Chem. Soc. A 1968, 133. [Google Scholar] [CrossRef]
- Morss, L.R.; Fuger, J. Preparation and crystal structures of dicesium berkelium hexachloride and dicesium sodium berkelium hexachloride. Inorg. Chem. 1969, 8, 1433–1439. [Google Scholar] [CrossRef] [Green Version]
- Morss, L.R.; Siegal, M.; Stenger, L.; Edelstein, N. Preparation of cubic chloro complex compounds of trivalent metals: Cs2NaMCl6. Inorg. Chem. 1970, 9, 1771–1775. [Google Scholar] [CrossRef]
- Morrs, L.R.; Robinson, W.R. Crystal structure of Cs2NaBiCl6. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1972, 28, 653–654. [Google Scholar] [CrossRef] [Green Version]
- Prokert, F.; Aleksandrov, K.S. Neutron Scattering Studies on Phase Transition and Phonon Dispersion in Cs2NaBiCl6. Phys. Status solidi (b) 1984, 124, 503–513. [Google Scholar] [CrossRef]
- Smit, W.; Dirksen, G.; Stufkens, D. Infrared and Raman spectra of the elpasolites Cs2NaSbCl6 and Cs2NaBiCl6: Evidence for a pseudo Jahn-Teller distorted ground state. J. Phys. Chem. Solids 1990, 51, 189–196. [Google Scholar] [CrossRef]
- Flerov, I.N.; Gorev, M.V.; Aleksandrov, K.; Tressaud, A.; Grannec, J.; Couzi, M. Phase transitions in elpasolites (ordered perovskites). Mater. Sci. Eng. R: Rep. 1998, 24, 81–151. [Google Scholar] [CrossRef]
- Jung, H.S.; Park, N.-G. Solar Cells: Perovskite Solar Cells: From Materials to Devices (Small 1/2015). Small 2015, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 2016, 15, 247–251. [Google Scholar] [CrossRef]
- Manser, J.S.; Christians, J.A.; Kamat, P.V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956–13008. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, Y. Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 2019, 12, 1495–1511. [Google Scholar] [CrossRef]
- Urbina, A. The balance between efficiency, stability and environmental impacts in perovskite solar cells: A review. J. Phys. Energy 2020, 2, 022001. [Google Scholar] [CrossRef]
- Cai, Y.; Xie, W.; Teng, Y.T.; Harikesh, P.C.; Ghosh, B.; Huck, P.; Persson, K.A.; Mathews, N.; Mhaisalkar, S.; Sherburne, M.P.; et al. High-throughput Computational Study of Halide Double Perovskite Inorganic Compounds. Chem. Mater. 2019, 31, 5392–5401. [Google Scholar] [CrossRef] [Green Version]
- Bartel, C.J.; Sutton, C.; Goldsmith, B.R.; Ouyang, R.; Musgrave, C.B.; Ghiringhelli, L.M.; Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 2019, 5, eaav0693. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yang, K. High-throughput computational design of organic–inorganic hybrid halide semiconductors beyond perovskites for optoelectronics. Energy Environ. Sci. 2019, 12, 2233–2243. [Google Scholar] [CrossRef]
- Jain, A.; Voznyy, O.; Sargent, E.H. High-Throughput Screening of Lead-Free Perovskite-like Materials for Optoelectronic Applications. J. Phys. Chem. C 2017, 121, 7183–7187. [Google Scholar] [CrossRef]
- Roknuzzaman, M.; Zhang, C.; Ostrikov, K.; Du, A.; Wang, H.; Wang, L.; Tesfamichael, T. Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications. Sci. Rep. 2019, 9, 718. [Google Scholar] [CrossRef] [Green Version]
- Volonakis, G.; Haghighirad, A.A.; Milot, R.L.; Sio, W.H.; Filip, M.R.; Wenger, B.; Johnston, M.B.; Herz, L.M.; Snaith, H.J.; Giustino, F. Cs2InAgCl6: A New Lead-Free Halide Double Perovskite with Direct Band Gap. J. Phys. Chem. Lett. 2017, 8, 772–778. [Google Scholar] [CrossRef] [Green Version]
- Nandha K., N.; Nag, A. Synthesis and luminescence of Mn-doped Cs2AgInCl6 double perovskites. Chem. Commun. 2018, 54, 5205–5208. [Google Scholar] [CrossRef]
- Locardi, F.; Cirignano, M.; Baranov, D.; Dang, Z.; Prato, M.; Drago, F.; Ferretti, M.; Pinchetti, V.; Fanciulli, M.; Brovelli, S.; et al. Colloidal Synthesis of Double Perovskite Cs2AgInCl6 and Mn-Doped Cs2AgInCl6 Nanocrystals. J. Am. Chem. Soc. 2018, 140, 12989–12995. [Google Scholar] [CrossRef]
- Karmakar, A.; Dodd, M.S.; Agnihotri, S.; Ravera, E.; Michaelis, V.K. Cu(II)-Doped Cs2SbAgCl6 Double Perovskite: A Lead-Free, Low-Bandgap Material. Chem. Mater. 2018, 30, 8280–8290. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Cai, T.; Li, W.; Hills-Kimball, K.; Yang, H.; Que, M.; Nagaoka, Y.; Liu, Z.; Yang, D.; Donga, A.; et al. Yb- and Mn-Doped Lead-Free Double Perovskite Cs2AgBiX6 (X = Cl–, Br–) Nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 16855–16863. [Google Scholar] [CrossRef]
- Li, W.; Ionescu, E.; Riedel, R.; Gurlo, A. Can we predict the formability of perovskite oxynitrides from tolerance and octahedral factors? J. Mater. Chem. A 2013, 1, 12239. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Die Gesetze der Krystallochemie. Naturwissenschaften 1926, 14, 477–485. [Google Scholar] [CrossRef]
- Fedorovskiy, A.E.; Drigo, N.A.; Nazeeruddin, M.K. The Role of Goldschmidt’s Tolerance Factor in the Formation of A2BX6 Double Halide Perovskites and its Optimal Range. Small Methods 2019, 4. [Google Scholar] [CrossRef]
- Salinas, A.; García-Muñoz, J.L.; Rodríguez-Carvajal, J.; Sáez-Puche, R.; Martínez, J. Structural characterization of R2BaCuO5 (R = Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Eu and Sm) oxides by X-ray and neutron diffraction. J. Solid State Chem. 1992, 100, 201–211. [Google Scholar] [CrossRef]
- Yamada, I.; Takamatsu, A.; Ikeno, H. Complementary evaluation of structure stability of perovskite oxides using bond-valence and density-functional-theory calculations. Sci. Technol. Adv. Mater. 2018, 19, 101–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dresselhaus, M.S. Solid State Physics Part II Optical Properties of Solids. 2001, Volume 6. Available online: http://web.mit.edu/course/6/6.732/www/6.732-pt2.pdf (accessed on 18 May 2020).
- Li, L.; Wang, W.; Liu, H.; Liu, X.; Song, Q.; Ren, S. First Principles Calculations of Electronic Band Structure and Optical Properties of Cr-Doped ZnO. J. Phys. Chem. C 2009, 113, 8460–8464. [Google Scholar] [CrossRef]
- Jong, U.-G.; Yu, C.-J.; Ri, J.-S.; Kim, N.-H.; Ri, G.-C. Influence of halide composition on the structural, electronic, and optical properties of mixed CH3NH3Pb(I1−xBrx)3 perovskites calculated using the virtual crystal approximation method. Phys. Rev. B 2016, 94, 125139. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Jia, R.; Xin, B.; Peng, B.; Zhang, Y. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3. Sci. Rep. 2017, 7, 40160. [Google Scholar] [CrossRef] [PubMed]
- Matthes, L.; Pulci, O.; Bechstedt, F. Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles. New J. Phys. 2014, 16, 105007. [Google Scholar] [CrossRef]
- Peng, H.; Yang, Z.-H.; Perdew, J.P.; Sun, J. Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation. Phys. Rev. X 2016, 6, 041005. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kitchaev, D.A.; Yang, J.; Chen, T.; Dacek, S.T.; Sarmiento-Perez, R.A.; Marques, M.A.L.; Peng, H.; Ceder, G.; Perdew, J.P.; et al. Efficient first-principles prediction of solid stability: Towards chemical accuracy. npj Comput. Mater. 2018, 4, 9. [Google Scholar] [CrossRef]
- Buda, I.G.; Lane, C.; Barbiellini, B.; Ruzsinszky, A.; Sun, J.; Bansil, A. Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional. Sci. Rep. 2017, 7, 44766. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Remsing, R.C.; Zhang, Y.; Sun, Z.; Ruzsinszky, A.; Peng, H.; Yang, Z.; Paul, A.; Waghmare, U.; Wu, X.; et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat. Chem. 2016, 8, 831–836. [Google Scholar] [CrossRef]
- Chakraborty, A.; Dixit, M.; Aurbach, D.; Major, D.T. Predicting accurate cathode properties of layered oxide materials using the SCAN meta-GGA density functional. npj Comput. Mater. 2018, 4, 60. [Google Scholar] [CrossRef]
- Bokdam, M.; Lahnsteiner, J.; Ramberger, B.; Schäfer, T.; Kresse, G. Assessing Density Functionals Using Many Body Theory for Hybrid Perovskites. Phys. Rev. Lett. 2017, 119, 145501. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Bilbao Crystallographic Server. Available online: https://www.cryst.ehu.es/ (accessed on 25 April 2020).
- VASP Documentary on the Tetrahedron Method. Available online: https://www.vasp.at/wiki/index.php/ISMEAR (accessed on 25 April 2020).
- Density of States Plot Using Python and Matplotlib. Available online: https://github.com/QijingZheng/pyband (accessed on 25 April 2020).
- Ganose, A.M.; Jackson, A.; Scanlon, D.O. sumo: Command-line tools for plotting and analysis of periodic ab initio calculations. J. Open Source Softw. 2018, 3, 717. [Google Scholar] [CrossRef]
- Böer, K.W. Handbook of the Physics of Thin-Film Solar Cells; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-642-36747-2. [Google Scholar]
- Gajdoš, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F. Linear optical properties in the PAW methodology. Phys. Rev. B 2006, 73, 045112. [Google Scholar] [CrossRef] [Green Version]
- Brivio, F.; Walker, A.B.; Walsh, A. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 2013, 1, 42111. [Google Scholar] [CrossRef] [Green Version]
- Calculation of High Frequency Dielectric Function Using VASP. Available online: https://www.vasp.at/wiki/index.php/LOPTICS#cite_note-gajdos:prb:06-1 (accessed on 25 April 2020).
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [Green Version]
- Marzari, N.; Singh, D.J. Dielectric response of oxides in the weighted density approximation. Phys. Rev. B 2000, 62, 12724–12729. [Google Scholar] [CrossRef]
- Corso, A.D.; Baroni, S.; Resta, R. Density-functional theory of the dielectric constant: Gradient-corrected calculation for silicon. Phys. Rev. B 1994, 49, 5323–5328. [Google Scholar] [CrossRef]
- Kootstra, F.; De Boeij, P.L.; Snijders, J.G. Application of time-dependent density-functional theory to the dielectric function of various nonmetallic crystals. Phys. Rev. B 2000, 62, 7071–7083. [Google Scholar] [CrossRef] [Green Version]
- Walsh, A. Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic–Inorganic Halide Perovskites. J. Phys. Chem. C 2015, 119, 5755–5760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Yi, Y.; Coropceanu, V.; Brédas, J.-L. Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport. Phys. Rev. B 2014, 90, 245112. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; McClary, S.A.; Song, Z.; Zhao, D.; Graeser, B.K.; Wang, C.; Shrestha, N.; Wang, X.-M.; Chen, C.; Li, C.; et al. A Cu3PS4 nanoparticle hole selective layer for efficient inverted perovskite solar cells. J. Mater. Chem. A 2019, 7, 4604–4610. [Google Scholar] [CrossRef]
- Ming, W.; Shi, H.; Du, M.-H. Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3. J. Mater. Chem. A 2016, 4, 13852–13858. [Google Scholar] [CrossRef]
- Stancu, A.; Let, D.; Bacinschi, Z. CHARGE TRANSPORT IN SEMICONDUCTOR MATERIALS. J. Sci. Arts 2009. Available online: http://www.josa.ro/docs/josa_2009_2/c.06_CHARGE_TRANSPORT_IN_SEMICONDUCTOR_MATERIALS.pdf (accessed on 25 April 2020).
- Wang, Z.; Ganose, A.M.; Niu, C.; Scanlon, D.O. Two-dimensional eclipsed arrangement hybrid perovskites for tunable energy level alignments and photovoltaics. J. Mater. Chem. C 2019, 7, 5139–5147. [Google Scholar] [CrossRef] [Green Version]
- Rohlfing, M.; Louie, S.G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 2000, 62, 4927–4944. [Google Scholar] [CrossRef]
- Onida, G.; Rubio, A.; Reining, L. Electronic excitations: Density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 2002, 74, 601–659. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.-J. Advances in modelling and simulation of halide perovskites for solar cell applications. J. Physics: Energy 2019, 1, 022001. [Google Scholar] [CrossRef]
- Zakutayev, A.; Caskey, C.M.; Fioretti, A.N.; Ginley, D.; Vidal, J.; Stevanovic, V.; Tea, E.; Lany, S. Defect Tolerant Semiconductors for Solar Energy Conversion. J. Phys. Chem. Lett. 2014, 5, 1117–1125. [Google Scholar] [CrossRef]
- Brandt, R.E.; Stevanović, V.; Ginley, D.; Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: Beyond hybrid lead halide perovskites. MRS Commun. 2015, 5, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Du, M.H. Hybrid organic-inorganic halide perovskites: Electronic structure, dielectric properties, native defects and the role of ns2 ions. In Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications; Giacomo, G., Koichi, Y., Eds.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 1351648462, 9781351648462. [Google Scholar]
- Zangwill, A. Modern Electrodynamics; Cambridge University Press: Cambridge, UK, 2013; Chapter 6. [Google Scholar]
- Wilson, J.N.; Frost, J.M.; Wallace, S.K.; Walsh, A. Dielectric and ferroic properties of metal halide perovskites. APL Mater. 2019, 7, 010901. [Google Scholar] [CrossRef]
- Hamada, Y.Z.; Bayakly, N.; Shafi, M.; Painter, S.; Taylor, V.; Greene, J.; Rosli, K. Reactions of Cr3+ with aspartic acid within a wide pH range. Complex Met. 2014, 1, 46–51. [Google Scholar] [CrossRef]
- Laksman, S.V.; Devi, P.R. Optical Absorption Spectrum of Cr3+ Ion in Strontium Formate Crystal. Available online: https://www.insa.nic.in/writereaddata/UpLoadedFiles/PINSA/Vol45A_1979_4_Art11.pdf (accessed on 25 April 2020).
- Zamyatina, E.; Karzanov, V.; Zamyatin, O. Optical properties of the zinc-tellurite glasses doped with Cr3+ ions. J. Non-Crystalline Solids 2020, 528, 119759. [Google Scholar] [CrossRef]
- Pankove, J.I.; Kiewit, D.A. Reviewer Optical Processes in Semiconductors; Prentice Hall: Upper Saddle River, NJ, USA, 1971; p. 34. [Google Scholar]
- Barugkin, C.; Cong, J.; Duong, T.; Rahman, S.; Nguyen, H.; Macdonald, D.; White, T.E.; Catchpole, K.R. Ultralow Absorption Coefficient and Temperature Dependence of Radiative Recombination of CH3NH3PbI3 Perovskite from Photoluminescence. J. Phys. Chem. Lett. 2015, 6, 767–772. [Google Scholar] [CrossRef]
- Park, N.-G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65–72. [Google Scholar] [CrossRef]
- Kangsabanik, J.; Sugathan, V.; Yadav, A.; Yella, A.; Alam, A. Double perovskites overtaking the single perovskites: A set of new solar harvesting materials with much higher stability and efficiency. Phys. Rev. Mater. 2018, 2, 055401. [Google Scholar] [CrossRef] [Green Version]
- Ezealigo, B.N.; Nwanya, A.C.; Ezugwu, S.; Offiah, S.; Obi, D.; Osuji, R.U.; Bucher, R.; Maaza, M.; Ejikeme, P.; Ezema, F.I. Method to control the optical properties: Band gap energy of mixed halide organolead perovskites. Arab. J. Chem. 2020, 13, 988–997. [Google Scholar] [CrossRef]
- Chen, C.-W.; Hsiao, S.-Y.; Chen, C.-Y.; Kang, H.-W.; Huang, Z.-Y.; Lin, H.-W. Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells. J. Mater. Chem. A 2015, 3, 9152–9159. [Google Scholar] [CrossRef]
- He, C.; Zha, G.; Deng, C.; An, Y.; Mao, R.; Liu, Y.; Lu, Y.; Chen, Z. Refractive Index Dispersion of Organic–Inorganic Hybrid Halide Perovskite CH3NH3PbX3 (X=Cl, Br, I) Single Crystals. Crystal (Wiley) 2019, 54, 1900011. [Google Scholar]
Compound | a = b = c/Å | α = β = γ/Deg | Volume (V)/Å3 | ρ/gcm−3 | GII/v.u. | Eg/eV | Nature of Eg | Eg/eV | Nature of Eg |
---|---|---|---|---|---|---|---|---|---|
Cs2AgCrBr6 | 10.68 | 90 | 1217.10 | 4.94 | 0.02 | 1.27 | Indirect at L→Γ | 1.46 | Direct at Γ |
Rb2AgCrBr6 | 10.58 | 90 | 1182.56 | 4.55 | 0.06 | 1.28 | Indirect at L→Γ | 1.50 | Direct at Γ |
K2AgCrBr6 | 10.52 | 90 | 1165.60 | 4.09 | 0.08 | 1.29 | Indirect at L→Γ | 1.52 | Direct at Γ |
System | Bond Distances/Å | ||
---|---|---|---|
r(Ag–Br/I/Cl) | r(Cr–Br/I/Cl) | r(A–Br/I/Cl) | |
Cs2AgCrBr6 | 2.811 | 2.527 | 3.778 |
Rb2AgCrBr6 | 2.774 | 2.514 | 3.741 |
K2AgCrBr6 | 2.755 | 2.507 | 3.723 |
Cs2AgCrI6 | 2.977 | 2.761 | 4.059 |
Cs2AgCrCl6 | 2.697 | 2.369 | 3.586 |
System | rA/Å | r[Ag+]/Å | r[Cr3+]/Å | rB = [r(Ag+) + r(Cr3+)]/2/Å | Br–/Å | μ= rB/ rX | t | τ |
---|---|---|---|---|---|---|---|---|
Cs2AgCrBr6 | 1.88 | 1.15 | 0.615 | 0.8825 | 1.96 | 0.45 | 0.96 | 4.04 |
Rb2AgCrBr6 | 1.72 | 1.15 | 0.615 | 0.8825 | 1.96 | 0.45 | 0.92 | 4.14 |
K2AgCrBr6 | 1.64 | 1.15 | 0.615 | 0.8825 | 1.96 | 0.45 | 0.90 | 4.22 |
Cs2AgCrCl6 | 1.88 | 1.15 | 0.615 | 0.8825 | 1.81 | 0.49 | 0.97 | 3.87 |
Cs2AgCrI6 | 1.88 | 1.15 | 0.615 | 0.8825 | 2.00 | 0.40 | 0.94 | 4.31 |
VBM | CBM | |||||
---|---|---|---|---|---|---|
Cr | Ag | Br/I/Cl | Cr | Ag | Br/I/Cl | |
3d | 4d | 4p/5p/3p | 3d | 5s | 4p/5p/3p | |
Cs2AgCrBr6 | 0.7 | 10.1 | 87.8 | 72.5 | 9.1 | 10.9 |
Rb2AgCrBr6 | 0.8 | 10.8 | 87.1 | 72.5 | 8.9 | 10.6 |
K2AgCrBr6 | 0.9 | 11.1 | 86.6 | 72.4 | 8.8 | 10.5 |
Cs2AgCrI6 | 7.95 | 2.82 | 86.8 | 69.9 | 8.9 | 12.7 |
Cs2AgCrCl6 | 46.0 | 17.0 | 35.2 | 74.9 | 10.1 | 9.4 |
Compound | Property | Crystallographic Directions | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | ||
Cs2AgCrBr6 | mh*/m0 (up) | −0.33 | −0.47 | −0.33 | −0.47 | −0.47 | −0.47 | −0.47 | −0.57 | −0.91 | −0.56 | −0.91 | −0.57 | −1.23 | −0.84 | −1.23 | −0.85 |
mh*/m0 (down) | −0.33 | −3.79 | −0.33 | −4.23 | −0.47 | −4.23 | −0.47 | −5.14 | −0.91 | −4.49 | −0.91 | −4.79 | −1.23 | −5.99 | −1.23 | −7.19 | |
Γ→L | Γ→X | ||||||||||||||||
me*/m0 | 0.50 | 0.59 | |||||||||||||||
L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | ||
Rb2AgCrBr6 | mh*/m0 (up) | −0.32 | −0.45 | −0.32 | −0.46 | −0.43 | −0.46 | −0.43 | −0.54 | −0.87 | −0.53 | −0.87 | −0.53 | −1.10 | −0.73 | −1.10 | −0.73 |
mh*/m0 (down) | −0.32 | −3.86 | −0.32 | −4.07 | −0.43 | −4.07 | −0.43 | −4.89 | −0.87 | −4.07 | −0.87 | −4.31 | −1.10 | −4.89 | −1.10 | −6.11 | |
Γ→L | Γ→X | ||||||||||||||||
me*/m0 | 0.50 | 0.60 | |||||||||||||||
L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | L→W | L→Γ | ||
K2AgCrBr6 | mh*/m0 (up) | −0.32 | −0.45 | −0.32 | −0.45 | −0.41 | −0.45 | −0.41 | −0.52 | −0.85 | −0.52 | −0.85 | −0.52 | −1.06 | −0.68 | −1.06 | −0.68 |
mh*/m0 (down) | −0.32 | −3.70 | −0.32 | −3.90 | −0.41 | −4.11 | −0.41 | −4.63 | −0.85 | −4.11 | −0.85 | −4.11 | −1.06 | −4.63 | −1.06 | −5.69 | |
Γ→L | Γ→X | ||||||||||||||||
me*/m0 | 0.50 | 0.61 |
System | Γ→L | Γ→X | Γ→L | Γ→X | Γ→L | Γ→X | |
---|---|---|---|---|---|---|---|
Cs2AgCrI6 | mh*/m0 (up) | −0.64 | −0.52 | −0.64 | −0.52 | −1.25 | −12.96 |
me*/m0 (up) | 0.35 | 0.48 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
R. Varadwaj, P. A2AgCrBr6 (A = K, Rb, Cs) and Cs2AgCrX6(X = Cl, I) Double Perovskites: A Transition-Metal-Based Semiconducting Material Series with Remarkable Optics. Nanomaterials 2020, 10, 973. https://doi.org/10.3390/nano10050973
R. Varadwaj P. A2AgCrBr6 (A = K, Rb, Cs) and Cs2AgCrX6(X = Cl, I) Double Perovskites: A Transition-Metal-Based Semiconducting Material Series with Remarkable Optics. Nanomaterials. 2020; 10(5):973. https://doi.org/10.3390/nano10050973
Chicago/Turabian StyleR. Varadwaj, Pradeep. 2020. "A2AgCrBr6 (A = K, Rb, Cs) and Cs2AgCrX6(X = Cl, I) Double Perovskites: A Transition-Metal-Based Semiconducting Material Series with Remarkable Optics" Nanomaterials 10, no. 5: 973. https://doi.org/10.3390/nano10050973
APA StyleR. Varadwaj, P. (2020). A2AgCrBr6 (A = K, Rb, Cs) and Cs2AgCrX6(X = Cl, I) Double Perovskites: A Transition-Metal-Based Semiconducting Material Series with Remarkable Optics. Nanomaterials, 10(5), 973. https://doi.org/10.3390/nano10050973