TiOxNy Thin Film Sputtered on a Fiber Ball Lens as Saturable Absorber for Passive Q-Switched Generation of a Single-Tunable/Dual-Wavelength Er-Yb Double Clad Fiber Laser
Abstract
:1. Introduction
2. Fiber MBL Coated with TiOxNy Thin Film
2.1. MBL Fabrication and TiOxNy Thin Film Deposition
2.2. TiOxNy Coating Characterization
2.3. Nonlinear Optical Absorption Characterization
2.4. Fiber Micro-Ball Lense Interfoerometer Setup and Operation Principle
3. PQS Tunable EYDCF Laser
3.1. Experimental Setup
3.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Skorczakowski, M.; Swiderski, J.; Pichola, W.; Nyga, P.; Zajac, A.; Maciejewska, M.; Galecki, L.; Kasprzak, J.; Gross, S.; Heinrich, A.; et al. Mid-infrared Q-switched Er:YAG laser for medical applications. Laser Phys. Lett. 2010, 7, 498–504. [Google Scholar] [CrossRef]
- Piao, Z.; Zeng, L.; Chen, Z.; Kim, C.S. Q-switched erbium-doped fiber laser at 1600 nm for photoacoustic imaging application. Appl. Phys. Lett. 2016, 108, 143701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laroche, M.; Chardon, A.M.; Nilsson, J.; Shepherd, D.P.; Clarkson, W.A.; Girard, S.; Moncorge, R. Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser. Opt. Lett. 2002, 27, 1980–1982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Q.; Zhang, H.; Ni, Z.; Wang, Y.; Polavarapu, L.; Shen, Z.; Xu, Q.H.; Tang, D.; Loh, K.P. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res. 2010, 4, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Popa, D.; Sun, Z.; Hasan, T.; Torrisi, F.; Wang, F.; Ferrari, A.C. Graphene Q-switched, tunable fiber laser. Appl. Phys. Lett. 2011, 98, 073106. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Wei, L.; Dong, B.; Liu, W. Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber. IEEE Photonics Technol. Lett. 2010, 22, 9–11. [Google Scholar] [CrossRef]
- Dong, B.; Hao, J.; Hu, J.; Liaw, C. Short linear-cavity Q-switched fiber laser with a compact short carbon nanotube based saturable absorber. Opt. Fiber Technol. 2011, 17, 105–107. [Google Scholar] [CrossRef]
- Oreshkov, B.; Veronesi, S.; Tonelli, M.; Lieto, A.; Petrov, V.; Griebner, U.; Mateos, X.; Buchvarov, I. Tm3+:LiGdF4 laser, passively Q-switched with a Cr2+: ZnSe saturable absorber. IEEE Photonics J. 2015, 7, 1502206. [Google Scholar] [CrossRef]
- Dussardier, B.; Maria, J.; Peterka, P. Passively Q-switched Ytterbium- and Chromium-doped all-fiber laser. Appl. Opt. 2011, 50, 20–23. [Google Scholar] [CrossRef]
- Laroche, M.; Gilles, H.; Girard, S.; Passilly, N.; Aït-Ameur, K. Nanosecond pulse generation in a passively Q-switched Yb-doped fiber laser by Cr4+: YAG saturable absorber. IEEE Photonic. Tech. L. 2006, 18, 764–766. [Google Scholar] [CrossRef]
- Yang, X.; Ma, Z.; Zheng, L.; Shang, L.; Su, F. An LD-pumped dual-wavelength actively Q-switched Nd: Sc0.2Y0.8SiO5 laser. Opt. Lett. 2015, 11, 92–94. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, C.; Huang, Y.; Wu, D.; Wu, J.; Xu, H.; Cai, Z.; Lin, Z.; Sun, L.; Weng, J. Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength. IEEE J. Sel. Top Quant. 2014, 20, 0902708. [Google Scholar]
- Liu, M.; Zhao, N.; Liu, H.; Zheng, X.W.; Luo, A.P.; Luo, Z.C.; Xu, W.C.; Zhao, C.J.; Zhang, H.; Wen, S.C. Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber. IEEE Photonic Technol. Lett. 2014, 26, 983–986. [Google Scholar]
- Gui, L.; Bagheri, S.; Strohfeldt, N.; Hentschel, M.; Zgrabik, C.M.; Metzger, B.; Linnenbank, H.; Hu, E.L.; Giessen, H. Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas. Nano Lett. 2016, 16, 5708–5713. [Google Scholar] [CrossRef]
- Rusdia, M.F.M.; Latiff, A.A.; Paulc, M.C.; Dasc, S.; Dharc, A.; Ahmadb, H.; Haruna, S.W. Titanium Dioxide (TiO2) film as a new saturable absorber for generating mode-locked thulium-holmium doped all-fiber laser. Opt. Laser Technol. 2017, 89, 16–20. [Google Scholar] [CrossRef]
- Graciani, J.; Fdez Sanz, J.; Asaki, T.; Nakamura, K.; Rodriguez, J.A. Interaction of oxygen with TiN(001) N↔O exchange and oxidation process. J. Chem. Phys. 2007, 126, 244713. [Google Scholar] [CrossRef]
- Heřman, D.; Šícha, J.; Musil, J. Magnetron sputtering of TiOxNy films. Vacuum 2006, 81, 285–290. [Google Scholar] [CrossRef]
- Martin, N.; Banakh, O.; Santo, A.M.E.; Springer, S.; Sanjinés, R.; Takadoum, J.; Lévy, F. Correlation between processing and properties of TiOxNy thin films sputter deposited by the reactive gas pulsing technique. Appl. Surf. Sci. 2001, 185, 123–133. [Google Scholar] [CrossRef]
- Liang, H.; Xu, J.; Zhou, D.; Sun, X.; Chu, S.; Bai, Y. Thickness dependent microstructural and electrical properties of TiN thin films prepared by DC reactive magnetron sputtering. Ceram. Int. 2016, 42, 2642–2647. [Google Scholar] [CrossRef]
- Braic, L.; Vasilantonakis, N.; Mihai, A.; Villar Garcia, I.J.; Fearn, S.; Zou, B.; Alford, N.M.N.; Doiron, B.; Oulton, R.F.; Maier, S.A.; et al. Titanium oxynitride thin films with tunable double epsilon-near-zero behavior for nanophotonic applications. ACS Appl. Mater. Interfaces 2017, 9, 29857–29862. [Google Scholar] [CrossRef]
- Lee, J.S.; Chung, Y.C.; DiGiovanni, D.J. Spectrum-sliced fiber amplifier light source for multichannel WDM applications. IEEE Photonics Technol. Lett. 2013, 5, 1458–1461. [Google Scholar] [CrossRef]
- Ibarra Escamilla, B.; Durán Sánchez, M.; Álvarez Tamayo, R.I.; Posada Ramírez, B.; Prieto Cortés, P.; Kuzin, E.A.; Cruz, J.L.; Andrés, M.V. Tunable dual-wavelength operation of an all-fiber thulium-doped fiber laser based on tunable fiber Bragg gratings. J. Opt. 2018, 20, 085702. [Google Scholar] [CrossRef]
- Liu, D.; Wu, Q.; Mei, C.; Yuan, J.; Xin, X.; Kumar, A.M.; Wei, F.; Han, W.; Kumar, R.; Yu, C.; et al. Hollow core fiber based interferometer for high-temperature (1000 °C) measurement. J. Lightwave Technol. 2017, 36, 1583–1590. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.J.; Yan, F.P.; Li, Q.; Liu, S.; Feng, T.; Tan, S.Y.; Feng, S.C. 1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating. Appl. Opt. 2013, 52, 4601–4607. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, Y.; Yan, S.; Tang, Y.; Xu, J. Dual-Wavelength 2-μm fiber laser with coupled fiber bragg grating cavities. IEEE Photonics Technol. Lett. 2016, 28, 1193–1196. [Google Scholar] [CrossRef]
- Iadicicco, A.; Cusano, A.; Cutolo, A.; Bernini, R.; Giordano, M. Thinned fiber Bragg gratings as high sensitivity refractive index sensor. IEEE Photonics Technol. Lett. 2004, 16, 1149–1151. [Google Scholar] [CrossRef]
- Mehta, A.; Mohammed, W.; Johnson, E.G. Multimode interference-based fiber-optic displacement sensor. IEEE Photonics Technol. Lett. 2003, 15, 1129–1131. [Google Scholar] [CrossRef]
- Leuthold, J.; Hess, R.; Eckner, J.; Besse, P.A.; Melchior, H. Spatial mode filters realized with multimode interference couplers. Opt. Lett. 1996, 21, 836–838. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, C.; Shum, P.; Wang, H.; Fu, S.; Cheng, X.; Wong, J.H.; Tian, X. Wavelength-tunable high-energy all-normal-dispersion Yb-doped mode-locked all-fiber laser with a HiBi fiber Sagnac loop filter. IEEE J. Quantum Electron. 2011, 47, 198–203. [Google Scholar] [CrossRef]
- Yang, R.; Yu, Y.S.; Xue, Y.; Chen, C.; Chen, Q.D.; Sun, H.B. Single S-tapered fiber Mach–Zehnder interferometers. Opt. Lett. 2011, 36, 4482–4484. [Google Scholar] [CrossRef]
- Liu, L.; Lu, P.; Liao, H.; Wang, S.; Yang, W.; Liu, D.; Zhang, J. Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm. IEEE Sens. J. 2016, 16, 3054–3058. [Google Scholar] [CrossRef]
- Yin, X.; Zhou, R. Compact vector fiber-optic displacement sensor using an asymmetric Mach–Zehnder interferometer. Opt. Commun. 2017, 400, 74–78. [Google Scholar] [CrossRef]
- Eom, J.B. Ball Lens Based Common path fiber optic interferometer sensor. J. Biosens. Bioelectron. 2015, 6, 1. [Google Scholar]
- Harun, S.W.; Jasim, A.A.; Rahman, H.A.; Muhammad, M.Z.; Ahmad, H. Micro-ball lensed fiber-based glucose sensor. IEEE Sens. J. 2012, 13, 348–350. [Google Scholar] [CrossRef]
- Jasim, A.A.; Zulkifli, A.Z.; Muhammad, M.Z.; Harun, S.W.; Ahmad, H. A new compact micro-ball lens structure at the cleaved tip of microfiber coupler for displacement sensing. Sens. Actuator A Phys. 2013, 189, 177–181. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Santos, J.L.; Frazão, O. Silica microspheres array strain sensor. Opt. Lett. 2014, 39, 5937–5940. [Google Scholar] [CrossRef]
- Van Bui, H.; Groenland, A.W.; Aarnink, A.A.I.; Wolters, R.A.M.; Schmitz, J.; Kovalgin, A.Y. Growth kinetics and oxidation mechanism of ALD TiN thin films monitored by in situ spectroscopic ellipsometry. J. Electrochem. Soc. 2011, 158, H214–H220. [Google Scholar] [CrossRef]
- Saha, N.C.; Tompkins, H.G. Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J. Appl. Phys. 1992, 72, 3072–3079. [Google Scholar] [CrossRef]
- Zaca Morán, P.; Kuzin, E.; Torres Turiján, J.; Ortega Mendoza, J.G.; Chávez, F.; Pérez Sánchez, G.F.; Gómez Pavón, L.C. High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers. Opt. Laser Technol. 2013, 52, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Prieto Cortés, P.; Álvarez Tamayo, R.I.; García Méndez, M.; Durán Sánchez, M.; Barcelata Pinzón, A.; Ibarra Escamilla, B. Magnetron sputtered Al-doped ZnO thin film as saturable absorber for passively Q-switched Er/Yb double clad fiber laser. Laser Phys. Lett. 2019, 16, 045101. [Google Scholar] [CrossRef]
- Irimpan, L.; Deepthy, A.; Krishnan, B.; Nampoori, V.P.N.; Radhakrishnan, P. Nonlinear optical characteristics of self-assembled films of ZnO. Appl. Phys. B 2008, 90, 547. [Google Scholar] [CrossRef]
Deposition Time | Ar Flow | N2 Flow | d | P | Working Pressure | Thickness |
---|---|---|---|---|---|---|
60 s | 20 sccm | 4 sccm | 5 cm | 200 W | 5.0 × 10−1 Pa | 40 nm |
Transition Signal | BEs before Sputtering (eV) | BEs after Sputtering (eV) |
---|---|---|
Ti2p3/2 | 457.98 | 453.98 |
O1s | 531.4 | 529.8 |
N1s | 395.3 | 395.7 |
Transition Signal | BEs (eV) | Description | Reference |
---|---|---|---|
Ti2p3/2 | 458.7 455.2 455.3 459.1 | -Ti2p in amorphous TiO2 -Ti2p in TiN -Ti2p in TiN -Ti2p in oxidized TiN | [37,38] |
O1s | 530 ± 0.2 531.4 | -Native oxide sample -Sub-stoichiometric oxide or an oxynitride | [38] |
N1s | 395.7 395.1 396.0 | -Intermediate oxynitride -Native oxide -Thermally bound N that is released during nitridation of Ti-O sites or in surface oxynitrides | [20,38] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Tamayo, R.I.; Gaspar-Ramírez, O.; Prieto-Cortés, P.; García-Méndez, M.; Barcelata-Pinzón, A. TiOxNy Thin Film Sputtered on a Fiber Ball Lens as Saturable Absorber for Passive Q-Switched Generation of a Single-Tunable/Dual-Wavelength Er-Yb Double Clad Fiber Laser. Nanomaterials 2020, 10, 923. https://doi.org/10.3390/nano10050923
Álvarez-Tamayo RI, Gaspar-Ramírez O, Prieto-Cortés P, García-Méndez M, Barcelata-Pinzón A. TiOxNy Thin Film Sputtered on a Fiber Ball Lens as Saturable Absorber for Passive Q-Switched Generation of a Single-Tunable/Dual-Wavelength Er-Yb Double Clad Fiber Laser. Nanomaterials. 2020; 10(5):923. https://doi.org/10.3390/nano10050923
Chicago/Turabian StyleÁlvarez-Tamayo, Ricardo I., Omar Gaspar-Ramírez, Patricia Prieto-Cortés, Manuel García-Méndez, and Antonio Barcelata-Pinzón. 2020. "TiOxNy Thin Film Sputtered on a Fiber Ball Lens as Saturable Absorber for Passive Q-Switched Generation of a Single-Tunable/Dual-Wavelength Er-Yb Double Clad Fiber Laser" Nanomaterials 10, no. 5: 923. https://doi.org/10.3390/nano10050923
APA StyleÁlvarez-Tamayo, R. I., Gaspar-Ramírez, O., Prieto-Cortés, P., García-Méndez, M., & Barcelata-Pinzón, A. (2020). TiOxNy Thin Film Sputtered on a Fiber Ball Lens as Saturable Absorber for Passive Q-Switched Generation of a Single-Tunable/Dual-Wavelength Er-Yb Double Clad Fiber Laser. Nanomaterials, 10(5), 923. https://doi.org/10.3390/nano10050923