Theoretical Investigation of Azobenzene-Based Photochromic Dyes for Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Isolated Dyes and Dye/TiO2 Complexes
3.2. FT-IR Spectroscopic Analysis
3.3. Adsorption Energy
3.4. Structural Analysis
3.5. Cation-to-TiO2 Surface Distance
3.6. Molecular Orbitals
3.7. UV-Visible Spectroscopic Analysis
3.8. Energy Diagram
3.9. Electrostatic Potential
3.10. Charge Density Difference
3.11. NBO Analysis
3.12. Natural Transition Orbitals and Density of States
3.13. Polarizability and Hyperpolarizability
3.14. Other Molecular Properties
3.15. Excited State Lifetime
3.16. Chemical Reactivity Parameters
3.17. Factors Affecting Short-Circuit Current Density
3.18. Factors Affecting Open Circuit Voltage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hardin, B.E.; Snaith, H.J.; McGehee, M.D. The renaissance of dye-sensitized solar cells. Nat. Photon. 2012, 6, 162–169. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Numata, Y.; Han, L. Highly efficient dye-sensitized solar cells: Progress and future challenges. Energy Environ. Sci. 2013, 6, 1443–1464. [Google Scholar] [CrossRef]
- Fakharuddin, A.; Jose, R.; Brown, T.M.; Fabregat-Santiago, F.; Bisquert, J. A perspective on the production of dye-sensitized solar modules. Energy Environ. Sci. 2014, 7, 3952–3981. [Google Scholar] [CrossRef]
- Liang, M.; Chen, J. Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev. 2013, 42, 3453–3488. [Google Scholar] [CrossRef]
- Xu, M.; Li, R.; Pootrakulchote, N.; Shi, D.; Guo, J.; Yi, Z.; Zakeeruddin, S.M.; Grätzel, M.; Wang, P. Energy-level and molecular engineering of organic D-π-A sensitizers in dye-sensitized solar cells. J. Phys. Chem. C 2008, 112, 19770–19776. [Google Scholar] [CrossRef]
- Cai, N.; Moon, S.-J.; Cevey-Ha, L.; Moehl, T.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S.M.; Grätzel, M. An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Lette. 2011, 11, 1452–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, D.; Park, K.W.; Kim, J.; Hong, J.; Kwak, K. DFT computational investigation of tuning the electron-donating ability in metal-free organic dyes featuring a thienylethynyl spacer for dye-sensitized solar cells. Comput. Theor. Chem. 2016, 1081, 30–37. [Google Scholar] [CrossRef]
- Park, K.-W.; Serrano, L.A.; Ahn, S.; Baek, M.H.; Wiles, A.A.; Cooke, G.; Hong, J. An investigation of the role the donor moiety plays in modulating the efficiency of ‘donor-π-acceptor-π-acceptor’ organic DSSCs. Tetrahedron 2017, 73, 1098–1104. [Google Scholar] [CrossRef]
- Rashid, M.A.M.; Hayati, D.; Kwak, K.; Hong, J. Computational Investigation of Tuning the Electron-Donating Ability in Metal-Free Organic Dyes Featuring an Azobenzene Spacer for Dye-Sensitized Solar Cells. Nanomaterials 2019, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Merino, E.; Ribagorda, M. Control over molecular motion using the cis-trans photoisomerization of the azo group. Beilstein J. Org. Chem. 2012, 8, 1071–1090. [Google Scholar] [CrossRef] [Green Version]
- Matczyszyn, K.; Sworakowski, J. Phase Change in Azobenzene Derivative-Doped Liquid Crystal Controlled by the Photochromic Reaction of the Dye. J. Phys. Chem. B 2003, 107, 6039–6045. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Z.; Buchholz, M.; Füllgrabe, N.; Grosjean, S.; Bebensee, F.; Bräse, S.; Wöll, C.; Heinke, L. Cis-to-Trans Isomerization of Azobenzene Investigated by Using Thin Films of Metal–Organic Frameworks. Phys. Chem. Chem. Phys. 2015, 17, 22721–22725. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.; Yang, X.; Yang, C.; Tian, H.; Li, S.; Wang, X.; Hagfeldt, A.; Sun, L. Influence of triple bonds as p-spacer units in metal-free organic dyes for dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 11305–11313. [Google Scholar] [CrossRef]
- Martisnovich, N.; Troisi, A. Theoretical studies of dye-sensitized solar cells: From electronic structure to elementary processes. Energy Environ. Sci. 2011, 4, 4473–4495. [Google Scholar] [CrossRef]
- Labat, F.; Bahers, T.L.; Ciofini, I.; Adamo, C. First-principles modeling of dye-sensitized solar cells: Challenges and perspectives. Acc. Chem. Res. 2012, 45, 1268–1277. [Google Scholar] [CrossRef]
- Al-Eid, M.; Lim, S.; Park, K.-W.; Fitzpatrick, B.; Han, C.-H.; Kwak, K.; Hong, J.; Cooke, G. Facile synthesis of metal-free organic dyes featuring a thienylethynyl spacer for dye sensitized solar cell. Dyes Pigment 2014, 104, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ganesan, P.; Teuscher, J.; Moehl, T.; Kim, Y.J.; Yi, C.; Comte, P.; Pei, K.; Holcombe, T.W.; Nazeeruddin, M.K.; et al. Influence of the donor size in D–pi–A organic dyes for dye-sensitized solar cells. J. Am. Chem. Soc. 2014, 136, 5722–5730. [Google Scholar] [CrossRef]
- Zarate, X.; Verdugo, S.S.; Serrano, A.R.; Schott, E. The Nature of the Donor Motif in Acceptor-Bridge-Donor Dyes as an Influence in the Electron Photo-Injection Mechanism in DSSCs. J. Phys. Chem. A 2016, 120, 1613–1624. [Google Scholar] [CrossRef]
- Novir, S.B.; Hashemianzadeh, S.M. Quantum chemical investigation of structural and electronic properties of trans- and cis-structures of some azo dyes for dye-sensitized solar cells. Comput. Theor. Chem. 2017, 1102, 87–97. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, J.; Mennucci, B. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef] [PubMed]
- Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Weinhold, F. NBO 5.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 2001. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-de-Armas, R.; San Miguel, M.A.; Oviedo, J.; Sanz, J.F. Coumarin Derivatives for Dye Sensitized Solar Cells: A TD-DFT Study. Phys. Chem. Chem. Phys. 2012, 14, 225–233. [Google Scholar] [CrossRef]
- Sánchez-de-Armas, R.; Oviedo López, J.; San-Miguel, M.A.; Sanz, J.F.; Ordejón, P.; Pruneda, M. Real-Time TD-DFT Simulations in Dye Sensitized Solar Cells: The Electronic Absorption Spectrum of Alizarin Supported on TiO2 Nanoclusters. J. Chem. Theory Comput. 2010, 6, 2856–2865. [Google Scholar] [CrossRef]
- Kreglewski, M. The geometry and inversion-internal rotation potential function of methylamine. J. Mol. Spectrosc. 1989, 113, 10–21. [Google Scholar] [CrossRef]
- Pearson, R.; Lovas, F.J. Microwave spectrum and molecular structure of methylenimine (CH2NH). J. Chem. Phys. 1977, 66, 4149–4156. [Google Scholar] [CrossRef]
- Bouwstra, J.A.; Schouten, A.; Kroon, J. Structural studies of the system trans-azobenzene/trans-stilbene. I. A reinvestigation of the disorder in the crystal structure of trans-azobenzene, C12H10N2. Acta Crystallogr. Sect. C 1983, 39, 1121–1123. [Google Scholar] [CrossRef]
- Oviedo, M.B.; Zarate, X.; Negre, C.F.A.; Schott, E.; Arratia-Pérez, R.; Sánchez, C.G. Quantum dynamical simulations as a tool for predicting photoinjection mechanisms in dye-sensitized TiO2 solar cells. J. Phys. Chem. Lett. 2012, 3, 2548–2555. [Google Scholar] [CrossRef]
- Sánchez-de-Armas, R.; Oviedo, J.; San Miguel, M.Á.; Sanz, J.F. Direct vs indirect mechanisms for electron injection in dye-sensitized solar cells. J. Phys. Chem. C 2011, 115, 11293–11301. [Google Scholar] [CrossRef]
- Asbury, J.B.; Wang, Y.-Q.; Hao, E.; Ghosh, H.N.; Lian, T. Evidences of hot excited state electron injection from sensitizer molecules to TiO2 nanocrystalline thin films. Res. Chem. Intermed. 2001, 27, 393–406. [Google Scholar] [CrossRef]
- Wu, Y.; Marszalek, M.; Zakeeruddin, S.M.; Zhang, Q.; Tian, H.; Grätzel, M.; Zhu, W. High-Conversion Efficiency Organic Dye-Sensitized Solar Cells: Molecular Engineering on D-A-π-A Featured Organic Indoline Dyes. Energy Environ. Sci. 2012, 5, 8261. [Google Scholar] [CrossRef]
- Kleinman, D.A. Nonlinear dielectric polarization in optical media. Phys. Rev. 1962, 126, 1977–1979. [Google Scholar] [CrossRef]
- Hsu, C. The electronic couplings in electron transfer and excitation energy transfer. Acc. Chem. Res. 2009, 42, 509–518. [Google Scholar] [CrossRef]
- Koopmans, T.A. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Mozer, A.J.; Wagner, P.; Officer, D.L.; Wallace, G.G.; Campbell, W.M.; Miyashita, M.; Sunahara, K.; Mori, S. The origin of open circuit voltage of porphyrin-sensitised TiO2 solar cells. Chem. Commun. 2008, 39, 4741–4743. [Google Scholar] [CrossRef]
- Li, M.; Kou, L.; Diao, L.; Zhang, Q.; Li, Z.; Wu, Q.; Lu, W.; Pan, D.; Wei, Z. Theoretical study of WS-9-Based organic sensitizers for unusual vis/NIR absorption and highly efficient dye-sensitized solar cells. J. Phys. Chem. C 2015, 119, 9782–9790. [Google Scholar] [CrossRef]
- Grätzel, M. Recent Advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 2009, 42, 1788–1798. [Google Scholar] [CrossRef]
- Ardo, S.; Meyer, G.J. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem. Soc. Rev. 2009, 38, 115–164. [Google Scholar] [CrossRef]
- Preat, J.; Michaux, C.; Jacquemin, D.; Perpète, E.A. Enhanced Efficiency of Organic Dye-Sensitized Solar Cells: Triphenylamine Derivatives. J. Phys. Chem. C 2009, 113, 16821–16833. [Google Scholar] [CrossRef]
- Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata, S.; Arakawa, H.; Tachiya, M. Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B 2004, 108, 4818–4822. [Google Scholar] [CrossRef]
- Islam, A.; Sugihara, H.; Arakawa, H. Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells. J. Photochem. Photobiol. A 2003, 158, 131–138. [Google Scholar] [CrossRef]
- Daeneke, T.; Mozer, A.J.; Uemura, Y.; Makuta, S.; Fekete, M.; Tachibana, Y.; Koumura, N.; Bach, U.; Spiccia, L. Dye regeneration kinetics in dye-sensitized solar cells. J. Am. Chem. Soc. 2012, 134, 16925–16928. [Google Scholar] [CrossRef] [PubMed]
- Marinado, T.; Nonomura, K.; Nissfolk, J.; Karlsson, M.K.; Hagberg, D.P.; Sun, L.; Mori, S.; Hagfeldt, A. How the nature of triphenylamine-polyene dyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes. Langmuir 2010, 26, 2592–2598. [Google Scholar] [CrossRef]
- Preat, J.; Jacquemin, D.; Perpete, E.A. Towards new efficient dye-sensitised solar cells. Energy Environ. Sci. 2010, 3, 891–904. [Google Scholar] [CrossRef]
- Zhang, C.-R.; Liu, Z.-J.; Chen, Y.-H.; Chen, H.-S.; Wu, Y.-Z.; Feng, W.; Wang, D.-B. DFT and TD-DFT study on structure and properties of organic dye sensitizer TA-St-CA. Curr. Appl. Phys. 2010, 10, 77–83. [Google Scholar] [CrossRef]
- Jung, H.S.; Lee, J.K. Dye-Sensitized Solar Cells for Economically Viable Photovoltaic Systems. J. Phys. Chem. Lett. 2013, 4, 1682–1693. [Google Scholar] [CrossRef]
- Marcus, R.A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 1993, 65, 599. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.L.; Zou, L.Y.; Ren, A.M.; Liu, Y.F.; Feng, J.K.; Sun, C.C. Theoretical studies on the electronic structures and optical properties of star-shaped triazatruxene/heterofluorene co-polymers. Dyes Pigment 2013, 96, 349–363. [Google Scholar] [CrossRef]
- Hutchison, G.R.; Ratner, M.A.; Marks, T.J. Hopping Transport in Conductive Heterocyclic Oligomers: Reorganization Energies and Substituent Effects. J. Am. Chem. Soc. 2005, 127, 2339–2350. [Google Scholar] [CrossRef]
Dye | Bond | Angle (Isolated Dye) | Angle (Dye/TiO2) |
---|---|---|---|
E-DMAC | N1=N2 | 1.268 | 1.272 |
C1-N1=N2-C2 | 179.86 | 178.68 | |
N3=C6 | 1.375 | 1.368 | |
C1=N1 | 1.397 | 1.394 | |
C2=N2 | 1.412 | 1.412 | |
Z-DMAC | N1=N2 | 1.255 | 1.261 |
C1-N1=N2-C2 | −11.49 | −11.85 | |
N3=C6 | 1.379 | 1.372 | |
C1=N1 | 1.42 | 1.412 | |
C2=N2 | 1.425 | 1.426 | |
E-DPAC | N1=N2 | 1.267 | 1.269 |
C1-N1=N2-C2 | 179.90 | −179.99 | |
N3=C6 | 1.404 | 1.399 | |
C1=N1 | 1.402 | 1.400 | |
C2=N2 | 1.414 | 1.415 | |
Z-DPAC | N1=N2 | 1.254 | 1.257 |
C1-N1=N2-C2 | −12.167 | −10.94 | |
N3=C6 | 1.407 | 1.408 | |
C1=N1 | 1.424 | 1.422 | |
C2=N2 | 1.429 | 1.431 |
Dye | Excited State Character | Transition Assignment (%) | Oscillator Strength, f | λmax | LHE |
---|---|---|---|---|---|
E-DMAC | π→π* | H-L (66.6%) H-L+1 (32.3%) | 2.0486 | 430 | 0.9911 |
Z-DMAC | n→π* | H-L+1 (52.9%) H−1-L (21.2%) | 0.2647 | 457 | 0.4564 |
π→π* | H-L (60.2%) H−1-L (18.3%) | 0.9926 | 347 | 0.8983 | |
E-DPAC | π→π* | H-L (65.9%) H-L+1 (26.1%) | 1.8015 | 440 | 0.9475 |
Z-DPAC | n→π* | H-L+1 (51.4) H−1-L+1 (20.3%) | 0.2583 | 471 | 0.4483 |
π→π* | H-L (64.4%) H−1-L+1 (15.6%) | 0.7985 | 341 | 0.8411 | |
E-DMAC/TiO2 | H-L (82.6%) | 2.3227 | 440 | 0.9953 | |
Z-DMAC/TiO2 | H-L+1 (30.1%) | 0.3276 | 458 | 0.5297 | |
H-L (53.8%) | 1.1195 | 364 | 0.9241 | ||
E-DPAC/TiO2 | H-L (85.7%) | 2.3189 | 452 | 0.9951 | |
Z-DPAC/TiO2 | H-L+1 (28.8%) | 0.2844 | 468 | 0.4805 | |
H-L (64.3%) | 0.8237 | 350 | 0.8499 |
Dye | HOMO | LUMO | HOMO-LUMO Gap | Ex-State Lifetime, τ | Dipole Moment, D | Exciton Binding Energy, EBE | Coupling Constant, |VRP| |
---|---|---|---|---|---|---|---|
E-DMAC | −5.2341 | −2.7576 | 2.477 | 1.43 | 11.61 | 0.41 | 0.6171 |
Z-DMAC | −5.2276 | −2.6858 | 2.541 | 1.99 | 12.20 | 0.89 | 0.6138 |
E-DPAC | −5.2270 | −2.8066 | 2.420 | 1.52 | 8.67 | 0.47 | 0.6135 |
Z-DPAC | −5.2034 | −2.7217 | 2.482 | 2.57 | 9.53 | 0.93 | 0.6017 |
E-DMAC/TiO2 | −5.2398 | −3.3065 | 1.936 | 1.39 | 22.5 | 0.88 | 0.6199 |
Z-DMAC/TiO2 | −5.2352 | −3.2997 | 1.936 | 1.95 | 28.7 | 1.33 | 0.6176 |
E-DPAC/TiO2 | −5.2200 | −3.3206 | 1.900 | 1.10 | 21.4 | 0.98 | 0.6101 |
Z-DPAC/TiO2 | −5.1734 | −3.3051 | 1.868 | 1.74 | 26.2 | 1.42 | 0.5867 |
Dyes | qDonor | qπ-spacer | qAcceptor | ∆qD-A |
---|---|---|---|---|
E-DMAC | 0.3078 | −0.1959 | −0.1119 | 0.4197 |
Z-DMAC | 0.2523 | −0.1395 | −0.1127 | 0.3650 |
E-DPAC | 0.2784 | −0.1711 | −0.1073 | 0.3858 |
Z-DPAC | 0.2090 | −0.1010 | −0.1079 | 0.3169 |
Dye | −∆Ginject | Edye | Edye* | E0-0 | ∆Greg | μnormal | eVOC |
---|---|---|---|---|---|---|---|
E-DMAC | −1.649 | 5.234 | 2.351 | 2.883 | 0.434 | 12.2 | 1.243 |
Z-DMAC | −1.399 | 5.228 | 2.602 | 2.626 | 0.428 | 11.6 | 1.314 |
E-DPAC | −1.661 | 5.227 | 2.339 | 2.888 | 0.427 | 9.5 | 1.193 |
Z-DPAC | −1.351 | 5.203 | 2.649 | 2.555 | 0.403 | 8.7 | 1.278 |
E-DMAC/TiO2 | −1.578 | 5.239 | 2.422 | 2.817 | 0.439 | 24.1 | 0.694 |
Z-DMAC/TiO2 | −1.365 | 5.235 | 2.636 | 2.601 | 0.435 | 19.9 | 0.700 |
E-DPAC/TiO2 | −1.663 | 5.220 | 2.337 | 2.883 | 0.420 | 21.1 | 0.680 |
Z-DPAC/TiO2 | −1.389 | 5.173 | 2.611 | 2.562 | 0.373 | 17.4 | 0.691 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, M.A.M.; Hayati, D.; Kwak, K.; Hong, J. Theoretical Investigation of Azobenzene-Based Photochromic Dyes for Dye-Sensitized Solar Cells. Nanomaterials 2020, 10, 914. https://doi.org/10.3390/nano10050914
Rashid MAM, Hayati D, Kwak K, Hong J. Theoretical Investigation of Azobenzene-Based Photochromic Dyes for Dye-Sensitized Solar Cells. Nanomaterials. 2020; 10(5):914. https://doi.org/10.3390/nano10050914
Chicago/Turabian StyleRashid, Md Al Mamunur, Dini Hayati, Kyungwon Kwak, and Jongin Hong. 2020. "Theoretical Investigation of Azobenzene-Based Photochromic Dyes for Dye-Sensitized Solar Cells" Nanomaterials 10, no. 5: 914. https://doi.org/10.3390/nano10050914
APA StyleRashid, M. A. M., Hayati, D., Kwak, K., & Hong, J. (2020). Theoretical Investigation of Azobenzene-Based Photochromic Dyes for Dye-Sensitized Solar Cells. Nanomaterials, 10(5), 914. https://doi.org/10.3390/nano10050914