Synthesis of TiO2/WO3 Composite Nanofibers by a Water-Based Electrospinning Process and Their Application in Photocatalysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of TiO2/WO3 Fibers
2.3. Photocatalysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C Photochem. Rev. 2015, 25, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhao, J.; Yang, X.; Ye, Q.; Huang, K.; Hou, C.; Zhao, Z.; You, J.; Li, Y. Fabrication of TiO2/WO3 Composite Nanofibers by Electrospinning and Photocatalystic Performance of the Resultant Fabrics. Ind. Eng. Chem. Res. 2016, 55, 80–85. [Google Scholar] [CrossRef]
- Nagy, D.; Firkala, T.; Drotár, E.; Szegedi, Á.; László, K.; Szilágyi, I.M. Photocatalytic WO3/TiO2 nanowires: WO3 polymorphs influencing the atomic layer deposition of TiO2. RSC Adv. 2016, 6, 95369–95377. [Google Scholar] [CrossRef] [Green Version]
- Justh, N.; Mikula, G.J.; Bakos, L.P.; Nagy, B.; László, K.; Parditka, B.; Erdélyi, Z.; Takáts, V.; Mizsei, J.; Szilágyi, I.M. Photocatalytic properties of TiO2@polymer and TiO2@carbon aerogel composites prepared by atomic layer deposition. Carbon N. Y. 2019, 147, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, Z.-G.; He, H.-W.; Wang, X.-X.; Zhang, J.; Zhang, Q.-Q.; Tong, Y.-F.; Liu, H.-L.; Ramakrishna, S.; Yan, S.-Y.; et al. One-Step Synthesis Heterostructured g-C3N4/TiO2 Composite for Rapid Degradation of Pollutants in Utilizing Visible Light. Nanomaterials 2018, 8, 842. [Google Scholar] [CrossRef] [Green Version]
- Nakata, K.; Liu, B.; Goto, Y.; Ochiai, T.; Sakai, M.; Sakai, H.; Murakami, T.; Abe, M.; Fujishima, A. Visible Light Responsive Electrospun TiO2 Fibers Embedded with WO3 Nanoparticles. Chem. Lett. 2011, 40, 1161–1162. [Google Scholar] [CrossRef]
- Song, Y.-Y.; Gao, Z.-D.; Wang, J.-H.; Xia, X.-H.; Lynch, R. Multistage Coloring Electrochromic Device Based on TiO2 Nanotube Arrays Modified with WO3 Nanoparticles. Adv. Funct. Mater. 2011, 21, 1941–1946. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, P.; Hu, J.; Pan, J.; Fan, J.; Shao, G. One-dimensional Z-scheme TiO2/WO3/Pt heterostructures for enhanced hydrogen generation. Appl. Surf. Sci. 2017, 391, 211–217. [Google Scholar] [CrossRef]
- Smith, Y.R.; Sarma, B.; Mohanty, S.K.; Misra, M. Formation of TiO2–WO3 nanotubular composite via single-step anodization and its application in photoelectrochemical hydrogen generation. Electrochem. commun. 2012, 19, 131–134. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Santala, E.; Heikkilä, M.; Pore, V.; Kemell, M.; Nikitin, T.; Teucher, G.; Firkala, T.; Khriachtchev, L.; Räsänen, M.; et al. Photocatalytic properties of WO3/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition. Chem. Vap. Depos. 2013, 19, 149–155. [Google Scholar] [CrossRef]
- Reyes, K.R.; Stephens, Z.D.; Robinson, D.B. Composite WO3/TiO2 nanostructures for high electrochromic activity. ACS Appl. Mater. Interfaces 2015, 7, 2202–2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakornpradit, P.; Phiriyawirut, M.; Meeyoo, V. Preparation of TiO2/WO3 Composite Nanofibers by Electrospinning. Key Eng. Mater. 2017, 751, 296–301. [Google Scholar] [CrossRef]
- Epifani, M.; Comini, E.; Díaz, R.; Andreu, T.; Genç, A.; Arbiol, J.; Siciliano, P.; Faglia, G.; Morante, J.R. Acetone Sensing with TiO2-WO3 Nanocomposites: An Example of Response Enhancement by Inter-oxide Cooperative Effects. Procedia Eng. 2014, 87, 803–806. [Google Scholar] [CrossRef] [Green Version]
- Otieno, O.V.; Csáki, E.; Kéri, O.; Simon, L.; Lukács, I.E.; Szécsényi, K.M.; Szilágyi, I.M. Synthesis of TiO2 nanofibers by electrospinning using water-soluble Ti-precursor. J. Therm. Anal. Calorim. 2020, 139, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Kéri, O.; Bárdos, P.; Boyadjiev, S.; Igricz, T.; Nagy, Z.K.; Szilágyi, I.M. Thermal properties of electrospun polyvinylpyrrolidone/titanium tetraisopropoxide composite nanofibers. J. Therm. Anal. Calorim. 2019, 137, 1249–1254. [Google Scholar] [CrossRef] [Green Version]
- Pradeep, D.; Dubey, R.S. Experimental Study of Electrospun TiO2 Nanofibers. Int. Res. J. Eng. Technol. 2017, 4, 1082–1083. [Google Scholar]
- Nasikhudin Ismaya, E.P.; Diantoro, M.; Kusumaatmaja, A.; Triyana, K. Preparation of PVA/TiO2 Composites Nanofibers by using Electrospinning Method for Photocatalytic Degradation. IOP Conf. Ser. Mater. Sci. Eng. 2017, 202, 012011. [Google Scholar] [CrossRef]
- Thenmozhi, S.; Dharmaraj, N.; Kadirvelu, K.; Kim, H.Y. Electrospun nanofibers: New generation materials for advanced applications. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2017, 217, 36–48. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, M.; Qin, X. Photocatalytic Activity of TiO2 Nanofibers: The Surface Crystalline Phase Matters. Nanomaterials 2019, 9, 535. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Xia, Y. Fabrication of Titania Nanofibers by Electrospinning. Nano Lett. 2003, 3, 555–560. [Google Scholar] [CrossRef]
- Im, J.S.; Kim, M.I.; Lee, Y.-S. Preparation of PAN-based electrospun nanofiber webs containing TiO2 for photocatalytic degradation. Mater. Lett. 2008, 62, 3652–3655. [Google Scholar] [CrossRef]
- Liu, R.; Ye, H.; Xiong, X.; Liu, H. Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property. Mater. Chem. Phys. 2010, 121, 432–439. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Nagy, D. Review on one-dimensional nanostructures prepared by electrospinning and atomic layer deposition. J. Phys. Conf. Ser. 2014, 559, 012010. [Google Scholar] [CrossRef]
- Contreras-Cáceres, R.; Cabeza, L.; Perazzoli, G.; Díaz, A.; López-Romero, J.M.; Melguizo, C.; Prados, J. Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy. Nanomaterials 2019, 9, 656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakos, L.P.; Karajz, D.; Katona, A.; Hernadi, K.; Parditka, B.; Erdélyi, Z.; Lukács, I.; Hórvölgyi, Z.; Szitási, G.; Szilágyi, I.M. Carbon nanosphere templates for the preparation of inverse opal titania photonic crystals by atomic layer deposition. Appl. Surf. Sci. 2020, 504, 144443. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Santala, E.; Heikkilä, M.; Kemell, M.; Nikitin, T.; Khriachtchev, L.; Räsänen, M.; Ritala, M.; Leskelä, M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: Optimising the annealing conditions for obtaining WO3 nanofibers. J. Therm. Anal. Calorim. 2011, 105, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Gu, M.; Jin, Y.; Jin, G. Preparation, structure and properties of TiO2-PVP hybrid films. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2000, 77, 55–59. [Google Scholar] [CrossRef]
- Yang, T.L.; Pan, C.T.; Chen, Y.C.; Lin, L.W.; Wu, I.C.; Hung, K.H.; Lin, Y.R.; Huang, H.L.; Liu, C.F.; Mao, S.W.; et al. Synthesis and fabrication of silver nanowires embedded in PVP fibers by near-field electrospinning process. Opt. Mater. 2015, 39, 118–124. [Google Scholar] [CrossRef]
- Boga, B.; Székely, I.; Pap, Z.; Baia, L.; Baia, M. Detailed Spectroscopic and Structural Analysis of TiO2/WO3 Composite Semiconductors. J. Spectrosc. 2018, 2018, 6260458. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-S.; Lee, Y.-I.; Song, H.; Jang, D.-H.; Choa, Y.-H. Synthesis and characterization of TiO2 nanowires with controlled porosity and microstructure using electrospinning method. Curr. Appl. Phys. 2011, 11, S210–S214. [Google Scholar] [CrossRef]
- Jo, M.; Cho, J.; Wang, X.; Jin, E.; Jeong, S.; Kang, D.-W. Improving of the Photovoltaic Characteristics of Dye-Sensitized Solar Cells Using a Photoelectrode with Electrospun Porous TiO2 Nanofibers. Nanomaterials 2019, 9, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, R.; Zhong, X.; Shang, S.; Wang, S.; Tang, M. Effects of sintering temperature on sensing properties of WO 3 and Ag-WO 3 electrode for NO 2 sensor. R. Soc. Open Sci. 2018, 5, 171691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ernawati, L.; Wahyuono, R.A.; Muhammad, A.A.; Nurislam Sutanto, A.R.; Maharsih, I.K.; Widiastuti, N.; Widiyandari, H. Mesoporous WO3/TiO2 Nanocomposites Photocatalyst for Rapid Degradation of Methylene Blue in Aqueous Medium. Int. J. Eng. 2019, 32, 1345–1352. [Google Scholar]
- Soares, L.; Alves, A. Photocatalytic properties of TiO2 and TiO2/WO3 films applied as semiconductors in heterogeneous photocatalysis. Mater. Lett. 2018, 211, 339–342. [Google Scholar] [CrossRef]
- Gao, L.; Gan, W.; Qiu, Z.; Zhan, X.; Qiang, T.; Li, J. Preparation of heterostructured WO3/TiO2 catalysts from wood fibers and its versatile photodegradation abilities. Sci. Rep. 2017, 7, 1102. [Google Scholar] [CrossRef] [Green Version]
- Paula, L.F.; Hofer, M.; Lacerda, V.P.B.; Bahnemann, D.W.; Patrocinio, A.O.T. Unraveling the photocatalytic properties of TiO2/WO3 mixed oxides. Photochem. Photobiol. Sci. 2019, 18, 2469–2483. [Google Scholar] [CrossRef]
Fibers | Diameter (d/nm) | Elemental Composition (wt %) | Surface Area (m2/g) | |||
---|---|---|---|---|---|---|
as-Spun Fibers | Annealed Fibers | Ti | W | O | ||
100% TiBALDH | 630–800 | 130–170 | 35.8 | 64.2 | 1.5 | |
90% TiBALDH | 720–1050 | 420–480 | 32.2 | 6.0 | 61.8 | 49.4 |
50% TiBALDH | 920–1170 | 700–740 | 12.1 | 23.1 | 64.7 | 25.8 |
10% TiBALDH | 980–1200 | 780–1020 | 7.3 | 28.8 | 63.9 | 11.3 |
0% TiBALDH | 1930–2950 | 1610–1940 | 36.8 | 63.2 | 9.3 |
Fibers | 100% TiBALDH | 90% TiBALDH | 50% TiBALDH | 10% TiBALDH | 0% TiBALDH |
---|---|---|---|---|---|
Bandgap [eV] | 3.06 | 2.96 | 2.73 | 2.62 | 2.58 |
Sample | kapp (min−1) | r2 |
---|---|---|
100% TiBALDH | 0.0009 | 99.6 |
90% TiBALDH | 0.0007 | 99.8 |
50% TiBALDH | 0.0009 | 98.9 |
10% TiBALDH | 0.0003 | 82.7 |
0% TiBALDH | 0.0002 | 98.4 |
Bare Methyl Orange | 0.00006 | 86.6 |
P25 | 0.001 | 99.8 |
Sample | k (min−1) | r2 |
---|---|---|
100% TiBALDH | 0.0001 | 86.1 |
90% TiBALDH | 0.0002 | 91.4 |
50% TiBALDH | 0.0001 | 87.2 |
10% TiBALDH | 0.0002 | 78.1 |
0% TiBALDH | 0.0002 | 92.0 |
Bare Methyl Orange | 0.0006 | 86.0 |
Photocatalyst | Method of Preparation | A/A° | Authors |
---|---|---|---|
WO3/TiO2 films | Electrospinning and deposition | 0.85 | Soares et al. [34] |
WO3/TiO2 core shell nanofibers | Electrospinning and ALD | 0.65 | Szilagyi et al. [10] |
WO3/TiO2-wood fibers | Hydrothermal synthesis | 0.2 | Gao et al. [35] |
WO3/TiO2 nanoparticles | Hydrothermal sol-gel synthesis | 0.2 | Paula et al. [36] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odhiambo, V.O.; Ongarbayeva, A.; Kéri, O.; Simon, L.; Szilágyi, I.M. Synthesis of TiO2/WO3 Composite Nanofibers by a Water-Based Electrospinning Process and Their Application in Photocatalysis. Nanomaterials 2020, 10, 882. https://doi.org/10.3390/nano10050882
Odhiambo VO, Ongarbayeva A, Kéri O, Simon L, Szilágyi IM. Synthesis of TiO2/WO3 Composite Nanofibers by a Water-Based Electrospinning Process and Their Application in Photocatalysis. Nanomaterials. 2020; 10(5):882. https://doi.org/10.3390/nano10050882
Chicago/Turabian StyleOdhiambo, Vincent Otieno, Aizat Ongarbayeva, Orsolya Kéri, László Simon, and Imre Miklós Szilágyi. 2020. "Synthesis of TiO2/WO3 Composite Nanofibers by a Water-Based Electrospinning Process and Their Application in Photocatalysis" Nanomaterials 10, no. 5: 882. https://doi.org/10.3390/nano10050882
APA StyleOdhiambo, V. O., Ongarbayeva, A., Kéri, O., Simon, L., & Szilágyi, I. M. (2020). Synthesis of TiO2/WO3 Composite Nanofibers by a Water-Based Electrospinning Process and Their Application in Photocatalysis. Nanomaterials, 10(5), 882. https://doi.org/10.3390/nano10050882