Light-Induced Sulfur Transport inside Single-Walled Carbon Nanotubes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Characterization Methods
3. Results and Discussion
3.1. Ampoule Filling of SWCNTs with Sulfur
3.2. Light Irradiation of Sulfur-Contained SWCNTs
4. Conclusion and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Monthioux, M. Filling single-wall carbon nanotubes. Carbon 2002, 40, 1809–1823. [Google Scholar] [CrossRef]
- Gately, R.D.; in het Panhuis, M. Filling of carbon nanotubes and nanofibres. Beilstein J. Nanotechnol. 2015, 6, 508–516. [Google Scholar] [CrossRef]
- Monthioux, M.; Flahaut, E.; Cleuziou, J.-P. Hybrid carbon nanotubes: Strategy, progress, and perspectives. J. Mater. Res. 2006, 21, 2774–2793. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Advances in tailoring the electronic properties of single-walled carbon nanotubes. Prog. Mater. Sci. 2016, 77, 125–211. [Google Scholar] [CrossRef]
- Poudel, Y.R.; Li, W. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: A review. Mater. Today Phys. 2018, 7, 7–37. [Google Scholar] [CrossRef]
- Gao, X.P.; Zhang, Y.; Chen, X.; Pan, G.L.; Yan, J.; Wu, F.; Yuan, H.T.; Song, D.Y. Carbon nanotubes filled with metallic nanowires. Carbon 2004, 42, 47–52. [Google Scholar] [CrossRef]
- Tessonnier, J.P.; Winé, G.; Estournès, C.; Leuvrey, C.; Ledoux, M.J.; Pham-Huu, C. Carbon nanotubes as a 1D template for the synthesis of air sensitive materials: About the confinement effect. Catal. Today 2005, 102–103, 29–33. [Google Scholar] [CrossRef]
- Kapoor, A.; Singh, N.; Dey, A.B.; Nigam, A.K.; Bajpai, A. 3d transition metals and oxides within carbon nanotubes by co-pyrolysis of metallocene & camphor: High filling efficiency and self-organized structures. Carbon 2018, 132, 733–745. [Google Scholar]
- Shimada, T.; Ohno, Y.; Okazaki, T.; Sugai, T.; Suenaga, K.; Kishimoto, S.; Mizutani, T.; Inoue, T.; Taniguchi, R.; Fukui, N.; et al. Transport properties of C78, C90 and Dy@C82 fullerenes-nanopeapods by field effect transistors. Phys. E Low Dimens. Syst. Nanostruct. 2004, 21, 1089–1092. [Google Scholar] [CrossRef]
- La Torre, A.; Fay, M.W.; Rance, G.A.; del Carmen Gimenez-Lopez, M.; Solomonsz, W.A.; Brown, P.D.; Khlobystov, A.N. Interactions of Gold Nanoparticles with the Interior of Hollow Graphitized Carbon Nanofibers. Small 2012, 8, 1222–1228. [Google Scholar] [CrossRef]
- Campo, J.; Piao, Y.; Lam, S.; Stafford, C.M.; Streit, J.K.; Simpson, J.R.; Hight Walker, A.R.; Fagan, J.A. Enhancing single-wall carbon nanotube properties through controlled endohedral filling. Nanoscale Horiz. 2016, 1, 317–324. [Google Scholar] [CrossRef]
- Hampel, S.; Leonhardt, A.; Selbmann, D.; Biedermann, K.; Elefant, D.; Müller, C.; Gemming, T.; Büchner, B. Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon 2006, 44, 2316–2322. [Google Scholar] [CrossRef]
- Nowak, M.; Jesionek, M. Carbon Nanotubes Filled With Ternary Chalcohalides. In Nanowires: Recent Advances; Peng, X., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Senkovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Riccò, M.; Bulusheva, L.G.; et al. Single-Walled Carbon Nanotube Reactor for Redox Transformation of Mercury Dichloride. ACS Nano 2017, 11, 8643–8649. [Google Scholar] [CrossRef]
- Tonkikh, A.A.; Rybkovskiy, D.V.; Orekhov, A.S.; Chernov, A.I.; Khomich, A.A.; Ewels, C.P.; Kauppinen, E.I.; Rochal, S.B.; Chuvilin, A.L.; Obraztsova, E.D. Optical properties and charge transfer effects in single-walled carbon nanotubes filled with functionalized adamantane molecules. Carbon 2016, 109, 87–97. [Google Scholar] [CrossRef]
- Chernov, A.I.; Fedotov, P.V.; Talyzin, A.V.; Lopez, I.S.; Anoshkin, I.V.; Nasibulin, A.G.; Kauppinen, E.I.; Obraztsova, E.D. Optical Properties of Graphene Nanoribbons Encapsulated in Single-Walled Carbon Nanotubes. ACS Nano 2013, 7, 6346–6353. [Google Scholar] [CrossRef]
- Fujimori, T.; Morelos-Gómez, A.; Zhu, Z.; Muramatsu, H.; Futamura, R.; Urita, K.; Terrones, M.; Hayashi, T.; Endo, M.; Young Hong, S.; et al. Conducting Linear Chains of Sulphur Inside Carbon Nanotubes. Nat. Commun. 2013, 4, 2162. [Google Scholar] [CrossRef]
- Fu, C.; Oviedo, M.B.; Zhu, Y.; von Wald Cresce, A.; Xu, K.; Li, G.; Itkis, M.E.; Haddon, R.C.; Chi, M.; Han, Y.; et al. Confined Lithium–Sulfur Reactions in Narrow-Diameter Carbon Nanotubes Reveal Enhanced Electrochemical Reactivity. ACS Nano 2018, 12, 9775–9784. [Google Scholar] [CrossRef]
- Sedelnikova, O.V.; Sysoev, V.I.; Gurova, O.A.; Makarova, A.A.; Ivanov, Y.P.; Koroteev, V.O.; Bulusheva, G.; Okotrub, A.V. Sulfur-Modified Single-Walled Carbon Nanotubes for Detection of NO2 Traces. (submitted).
- Hutchison, J.L.; Grobert, N.; Zakalyukin, R.M.; Eliseev, A.A.; Chernisheva, M.V.; Kumskov, A.S.; Grigoriev, Y.V.; Krestinin, A.V.; Freitag, B.; Kiselev, N.A.; et al. The Behaviour of 1D CuI Crystal@SWNT Nanocomposite under Electron Irradiation. In Proceedings of the AIP Conference Proceedings; AIP: Moscow, Russia, 2008; Volume 999, pp. 79–92. [Google Scholar]
- Chen, X.; Chen, H.; Tripisciano, C.; Jedrzejewska, A.; Rümmeli, M.H.; Klingeler, R.; Kalenczuk, R.J.; Chu, P.K.; Borowiak-Palen, E. Carbon-Nanotube-Based Stimuli-Responsive Controlled-Release System. Chem. Eur. J. 2011, 17, 4454–4459. [Google Scholar] [CrossRef]
- Chaban, V.V.; Savchenko, T.I.; Kovalenko, S.M.; Prezhdo, O.V. Heat-Driven Release of a Drug Molecule from Carbon Nanotubes: A Molecular Dynamics Study. J. Phys. Chem. B 2010, 114, 13481–13486. [Google Scholar] [CrossRef]
- Saikia, N.; Jha, A.N.; Deka, R.C. Dynamics of Fullerene-Mediated Heat-Driven Release of Drug Molecules from Carbon Nanotubes. J. Phys. Chem. Lett. 2013, 4, 4126–4132. [Google Scholar] [CrossRef]
- Guo, J.; Xu, Y.; Wang, C. Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium–Sulfur Batteries. Nano Lett. 2011, 11, 4288–4294. [Google Scholar] [CrossRef]
- Yang, C.-P.; Yin, Y.-X.; Guo, Y.-G.; Wan, L.-J. Electrochemical (De)Lithiation of 1D Sulfur Chains in Li–S Batteries: A Model System Study. J. Am. Chem. Soc. 2015, 137, 2215–2218. [Google Scholar] [CrossRef]
- Urita, K.; Fujimori, T.; Notohara, H.; Moriguchi, I. Direct Observation of Electrochemical Lithium–Sulfur Reaction inside Carbon Nanotubes. ACS Appl. Energy Mater. 2018, 1, 807–813. [Google Scholar] [CrossRef]
- Li, G.; Fu, C.; Oviedo, M.B.; Chen, M.; Tian, X.; Bekyarova, E.; Itkis, M.E.; Wong, B.M.; Guo, J.; Haddon, R.C. Giant Raman Response to the Encapsulation of Sulfur in Narrow Diameter Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2016, 138, 40–43. [Google Scholar] [CrossRef]
- Yang, J.; Lee, J.; Lee, J.; Yi, W. Gas Sensing Mechanism of Sulfur Chain-Encapsulated Single-Walled Carbon Nanotubes. Diam. Relat. Mater. 2019, 97, 107474. [Google Scholar] [CrossRef]
- Gurova, O.A.; Arhipov, V.E.; Koroteev, V.O.; Guselnikova, T.Y.; Asanov, I.P.; Sedelnikova, O.V.; Okotrub, A.V. Purification of Single-Walled Carbon Nanotubes Using Acid Treatment and Magnetic Separation. Phys. Status Solidi 2019, 256, 1800742. [Google Scholar] [CrossRef]
- Clancy, A.J.; Whire, E.R.; Tay, H.H.; Yau, H.C.; Shaffer, M.S.P. Systematic Comparison of Conventional and Reductive Single-Walled Carbon Nanotube Purifications. Carbon 2016, 108, 423–432. [Google Scholar] [CrossRef]
- Zabrodsky, V.V.; Aruev, P.N.; Sukhanov, V.L.; Zabrodskaya, N.V.; Ber, B.J.; Kasantsev, D.Y.; Alekseyev, A.G. Silicon Precision Detectors for Near IR, Visible, UV, XUV and Soft X-ray Spectral Range. In Proceedings of the 9th International Symposium on Measurement Technology and Intelligent Instruments, Saint-Peterburg, Russia, 29 June–2 July 2009; Volume 3, pp. 243–247. [Google Scholar]
- Piminov, P.A.; Baranov, G.N.; Bogomyagkov, A.V.; Berkaev, D.E.; Borin, V.M.; Dorokhov, V.L.; Karnaev, S.E.; Kiselev, V.A.; Levichev, E.B.; Meshkov, O.I.; et al. Synchrotron Radiation Research and Application at VEPP-4. Phys. Procedia 2016, 84, 19–26. [Google Scholar] [CrossRef]
- Nikolenko, A.D.; Avakyan, S.V.; Afanas’ev, I.M.; Voronin, N.A.; Kovalenko, N.V.; Legkodymov, A.A.; Lyakh, V.V.; Pindyurin, V.F. Kosmos station: Application of synchrotron radiation from the VEPP-4M storage ring for metrological measurements in the VUV and soft X-ray ranges. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2012, 6, 388–393. [Google Scholar] [CrossRef]
- Gorovikov, S.A.; Molodtsov, S.L.; Follath, R. Optical design of high-energy resolution beamline at a dipole magnet of BESSY II. Nucl. Instr. Methods Phys. Res. Sect. A 1998, 411, 506–512. [Google Scholar] [CrossRef]
- Gorovikov, S.A.; Follath, R.; Molodtsov, S.L.; Kaindl, G. Optimization of the optical design of the Russian-German soft-X-ray beamline at BESSY II. Nucl. Instr. Methods Phys. Res. Sect. A 2001, 467–468, 565–568. [Google Scholar] [CrossRef]
- Fedoseenko, S.I.; Iossifov, I.E.; Gorovikov, S.A.; Schmidt, J.-S.; Follath, R.; Molodtsov, S.L.; Adamchuk, V.K.; Kaindl, G. Development and present status of the Russian–German soft X-ray beamline at BESSY II. Nucl. Instr. Methods Phys. Res. Sect. A 2001, 470, 84–88. [Google Scholar] [CrossRef]
- Arenal, R.; Lopez-Bezanilla, A. In Situ Formation of Carbon Nanotubes Encapsulated within Boron Nitride Nanotubes via Electron Irradiation. ACS Nano 2014, 8, 8419–8425. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, L.; Fall, F.; Belhboub, A.; Le Parc, R.; Almadori, Y.; Arenal, R.; Aznar, R.; Dieudonne-George, P.; Hermet, P.; Rahmani, A.; et al. One-dimensional molecular crystal of phthalocyanine confined into single-walled carbon nanotubes. J. Phys. Chem. C 2015, 119, 5203–5210. [Google Scholar] [CrossRef]
- Setaro, A.; Adeli, M.; Glaeske, M.; Przyrembel, D.; Bisswanger, T.; Gordeev, G.; Weinelt, M.; Arenal, R.; Haag, R.; Reich, S. Preserving π-Conjugation in Covalently Functionalized Carbon Nanotubes for Optoelectronic Applications. Nat. Commun. 2017, 8, 14281. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Domanov, O.; Mittelberger, A.; Yanagi, K.; Pichler, P.; Eder, D. Fermi Level Engineering of Metallicity-Sorted Metallic Single-Walled Carbon Nanotubes by Encapsulation of Few-Atom-Thick Crystals of Silver Chloride. J. Mater. Sci. 2018, 53, 13018–13029. [Google Scholar] [CrossRef]
- Fouquet, M.; Telg, H.; Maultzsch, J.; Wu, Y.; Chandra, B.; Hone, J.; Heinz, T.F.; Thomsen, C. Longitudinal Optical Phonons in Metallic and Semiconducting Carbon Nanotubes. Phys. Rev. Lett. 2009, 102, 075501. [Google Scholar] [CrossRef]
- Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E.J.; Zhang, Y. Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells. J. Am. Chem. Soc. 2011, 133, 18522–18525. [Google Scholar] [CrossRef]
- Feng, X.; Song, M.-K.; Stolte, W.C.; Gardenghi, D.; Zhang, D.; Sun, X.; Zhu, X.; Cairns, E.J.; Guo, J. Understanding the degradation mechanism of rechargeable lithium/sulfur cells: A comprehensive study of the sulfur–graphene oxide cathode after discharge–charge cycling. Phys. Chem. Chem. Phys. 2014, 16, 16931–16940. [Google Scholar] [CrossRef]
- Hemraj-Benny, T.; Banerjee, S.; Sambasivan, S.; Balasubramanian, M.; Fischer, D.A.; Eres, G.; Puretzky, A.A.; Geohegan, D.B.; Lowndes, D.H.; Han, W.; et al. Near-Edge X-ray Absorption Fine Structure Spectroscopy as a Tool for Investigating Nanomaterials. Small 2006, 2, 26–35. [Google Scholar] [CrossRef]
- Koroteev, V.O.; Bulusheva, L.G.; Asanov, I.P.; Shlyakhova, E.V.; Vyalikh, D.V.; Okotrub, A.V. Charge Transfer in the MoS2/Carbon Nanotube Composite. J. Phys. Chem. C 2011, 115, 21199–21204. [Google Scholar] [CrossRef]
- Von Oertzen, G.U.; Skinner, W.M.; Nesbitt, H.W. Ab initio and x-ray photoemission spectroscopy study of the bulk and surface electronic structure of pyrite (100) with implications for reactivity. Phys. Rev. B 2005, 72, 235427. [Google Scholar] [CrossRef]
- Shi Kam, N.W.; O’Connell, M.; Wisdom, J.A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 2005, 102, 11600–11605. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Nakatsuji, H.; Inada, M.; Matoba, Y.; Umeyama, T.; Tsujimoto, M.; Isoda, S.; Hashida, M.; Imahori, H. Photodynamic and Photothermal Effects of Semiconducting and Metallic-Enriched Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2012, 134, 17862–17865. [Google Scholar] [CrossRef]
- Biris, A.S.; Boldor, D.; Palmer, J.; Monroe, W.T.; Mahmood, M.; Dervishi, E.; Xu, Y.; Li, Z.; Galanzha, E.I.; Zharov, V.P. Nanophotothermolysis of multiple scattered cancer cells with carbon nanotubes guided by time-resolved infrared thermal imaging. J. Biomed. Opt. 2009, 14, 021007. [Google Scholar] [CrossRef]
- Picou, L.; McMann, C.; Elzer, P.H.; Enright, F.M.; Biris, A.S.; Boldor, D. Spatio-temporal thermal kinetics of in situ MWCNT heating in biological tissues under NIR laser irradiation. Nanotechnology 2010, 21, 435101. [Google Scholar] [CrossRef]
- Gurova, O.A.; Dubatolova, T.D.; Shlyakhova, E.V.; Omelyanchuk, L.V.; Okotrub, A.V. Hyperthermal Effect of Infrared Irradiation on Aqueous Dispersion of Carbon Nanotubes and Their Penetration Into Drosophila melanogaster Larvae. Phys. Status Solidi Basic Res. 2018, 255, 2–7. [Google Scholar] [CrossRef]
- Gurova, O.A.; Omelyanchuk, L.V.; Dubatolova, T.D.; Antokhin, E.I.; Eliseev, V.S.; Yushina, I.V.; Okotrub, A.V. Synthesis and modification of carbon nanohorns structure for hyperthermic application. J. Struct. Chem. 2017, 58, 1205–1212. [Google Scholar] [CrossRef]
- Inoue, Y.; Ishijima, A. Local heating of molecular motors using single carbon nanotubes. Biophys. Rev. 2016, 8, 25–32. [Google Scholar] [CrossRef]
- Pérez del Pino, Á.; György, E.; Cabana, L.; Ballesteros, B.; Tobias, G. Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere. J. Appl. Phys. 2014, 115, 093501. [Google Scholar] [CrossRef]
- Nakamiya, T.; Ueda, T.; Ikegami, T.; Ebihara, K.; Tsuda, R. Thermal analysis of carbon nanotube film irradiated by a pulsed laser. Curr. Appl. Phys. 2008, 8, 400–403. [Google Scholar] [CrossRef]
- Boldor, D.; Gerbo, N.M.; Monroe, W.T.; Palmer, J.H.; Li, Z.; Biris, A.S. Temperature Measurement of Carbon Nanotubes Using Infrared Thermography. Chem. Mater. 2008, 20, 4011–4016. [Google Scholar] [CrossRef]
- Siregar, S.; Oktamuliani, S.; Saijo, Y. A Theoretical Model of Laser Heating Carbon Nanotubes. Nanomaterials 2018, 8, 580. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedelnikova, O.V.; Gurova, O.A.; Makarova, A.A.; Fedorenko, A.D.; Nikolenko, A.D.; Plyusnin, P.E.; Arenal, R.; Bulusheva, L.G.; Okotrub, A.V. Light-Induced Sulfur Transport inside Single-Walled Carbon Nanotubes. Nanomaterials 2020, 10, 818. https://doi.org/10.3390/nano10050818
Sedelnikova OV, Gurova OA, Makarova AA, Fedorenko AD, Nikolenko AD, Plyusnin PE, Arenal R, Bulusheva LG, Okotrub AV. Light-Induced Sulfur Transport inside Single-Walled Carbon Nanotubes. Nanomaterials. 2020; 10(5):818. https://doi.org/10.3390/nano10050818
Chicago/Turabian StyleSedelnikova, Olga V., Olga A. Gurova, Anna A. Makarova, Anastasiya D. Fedorenko, Anton D. Nikolenko, Pavel E. Plyusnin, Raul Arenal, Lyubov G. Bulusheva, and Alexander V. Okotrub. 2020. "Light-Induced Sulfur Transport inside Single-Walled Carbon Nanotubes" Nanomaterials 10, no. 5: 818. https://doi.org/10.3390/nano10050818
APA StyleSedelnikova, O. V., Gurova, O. A., Makarova, A. A., Fedorenko, A. D., Nikolenko, A. D., Plyusnin, P. E., Arenal, R., Bulusheva, L. G., & Okotrub, A. V. (2020). Light-Induced Sulfur Transport inside Single-Walled Carbon Nanotubes. Nanomaterials, 10(5), 818. https://doi.org/10.3390/nano10050818