Pressure Induced Stability Enhancement of Cubic Nanostructured CeO2 † †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fernandes, V.; Mossanek, R.J.O.; Schio, P.; Klein, J.J.; de Oliveira, A.J.A.; Ortiz, W.A.; Mattoso, N.; Varalda, J.; Schreiner, W.H.; Abbate, M.; et al. Dilute-defect magnetism: Origin of magnetism in nanocrystalline CeO2. Phys. Rev. B 2009, 80, 035202. [Google Scholar] [CrossRef]
- Fernandes, V.; Schio, P.; de Oliveira, A.J.A.; Ortiz, W.A.; Fichtner, P.; Amaral, L.; Graff, I.L.; Varalda, J.; Mattoso, N.; Schreiner, W.H.; et al. Ferromagnetism induced by oxygen and ceriumvacancies above the percolation limit in CeO2. J. Phys. Condens. Matter 2010, 22, 216004. [Google Scholar] [CrossRef] [PubMed]
- Singhal, R.K.; Kumar, S.; Samariya, A.; Dhawan, M.; Sharma, S.C.; Xing, Y.T. Investigating the mechanism of ferromagnetic exchange interaction in non-doped CeO2 with regard to defects and electronic structure. Mater. Chem. Phys. 2012, 132, 534–539. [Google Scholar] [CrossRef]
- Lipp, M.J.; Jeffries, J.R.; Cynn, H.; Park Klepeis, J.H.; Evans, W.J.; Mortensen, D.R.; Seidler, G.T.; Xiao, Y.; Chow, P. Comparison of the high-pressure behavior of the cerium oxides Ce2O3 and CeO2. Phys. Rev. B 2016, 93, 064106. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Song, H.X.; Wang, Z.; Geng, H.Y.; Jing, Q.; Zhang, Y.; Liu, S.; Xiang, S.; Bi, Y.; Xu, J.; et al. Strength and equation of state of fluorite phase CeO2 under high pressure. J. Appl. Phys. 2012, 112, 013532. [Google Scholar] [CrossRef]
- Duclos, S.J.; Vohra, Y.K.; Ruoff, A.L. High pressure X-ray diffraction study of CeO2 to 70 GPa and pressure-induced phase transformation from the fluorite structure. Phys. Rev. B 1998, 38, 7755–7758. [Google Scholar] [CrossRef]
- Jacobsen, M.K.; Velisavljevic, N.; Dattelbaum, D.M.; Chellappa, R.S.; Park, C. High pressure and temperature equation of stateand spectroscopic study of CeO2. J. Phys. Condens. Matter 2016, 28, 155401. [Google Scholar] [CrossRef]
- Wang, Q.; He, D.; Peng, F.; Lei, L.; Liu, P.; Yin, S.; Wang, P.; Xu, C.; Liu, J. Unusual Compression Behavior of Nanocrystalline CeO2. Sci. Rep. 2014, 4, 4441. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Seal, S.; Patil, S.; Zha, C.; Xue, Q. Anomalous Quasihydrostaticity and Enhanced Structural Stability of 3 nm Nanoceria. J. Phys. Chem. C 2007, 111, 11756–11759. [Google Scholar] [CrossRef]
- Wang, Z.; Saxena, S.K.; Pischedda, V.; Liermann, H.P.; Zha, C.S. In situ x-ray diffraction study of the pressure-induced phase transformation in nanocrystalline CeO2. Phys. Rev. B 2001, 64, 012102. [Google Scholar] [CrossRef]
- Machon, D.; Pischedda, V.; Le Floch, S.; San-Miguel, A. Perspective: High pressure transformations in nanomaterials and opportunities in material design. J. Appl. Phys. 2018, 124, 160902. [Google Scholar] [CrossRef] [Green Version]
- Takemura, K. Evaluation of the hydrostaticity of a helium-pressure medium with powderx-ray diffraction techniques. J. Appl. Phys. 2001, 89, 662–668. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P. Pressurizing conditions in helium-pressure-transmitting. High Press. Res. 2007, 27, 419–429. [Google Scholar] [CrossRef]
- Quantitative Powder Diffraction Standard (SRM 674b) Consisting of Fine-Grained, High-Purity, Equi-Axial Grains That Are Not in An Aggregated State. Standard Reference Material from NIST, 674b, X-ray Powder Diffraction Intensity Set; NIST: Gaithersburg, MD, USA, 2011.
- Ashiotis, G.; Deschildre, A.; Nawaz, Z.; Wright, J.P.; Karkoulis, D.; Picca, F.E.; Kieffer, J. The fast azimuthal integration Python library: pyFAI. J. Appl. Cryst. 2015, 48, 510–519. [Google Scholar] [CrossRef]
- Prescher, C.; Prakapenka, V.B. DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 2015, 35, 223–230. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent Developments of the Program FULLPROF. Cimmission Powder Diffr. Newsl. 2001, 26, 12–20. [Google Scholar]
- Larson, A.C.; Von Dreele, R.B. Los Alamos National Laboratory Report LAUR; Los Alamos National Laboratory: Los Alamos, NM, USA, 2000; pp. 86–748.
- CrysAlisPro Software System, version 1.171.39.46; Rigaku Corporation: Oxford, UK, 2018.
- Chen, L.; Fleming, P.; Morris, V.; Holmes, J.D.; Morris, M.A. Size-Related Lattice Parameter Changes and Surface Defects in Ceria Nanocrystals. J. Phys. Chem. C 2010, 114, 12909–12919. [Google Scholar] [CrossRef]
- Dutta, P.; Pal, S.; Seehra, M.S.; Shi, Y.; Eyring, E.M.; Ernst, R.D. Concentration of Ce3+ and Oxygen Vacancies in Cerium Oxide Nanoparticles. Chem. Mater. 2006, 18, 5144–5146. [Google Scholar] [CrossRef]
- Zhou, X.-D.; Huebner, W. Size-induced lattice relaxation in CeO2 nanoparticles. Appl. Phys. Lett. 2001, 79, 3512–3514. [Google Scholar] [CrossRef]
- Tsunekawa, S.; Ishikawa, K.; Li, Z.-Q.; Kawazoe, Y.; Kasuya, A. Origin of Anomalous Lattice Expansion in Oxide Nanoparticles. Phys. Rev. Lett. 2000, 85, 3440–3443. [Google Scholar] [CrossRef]
- Singh, A.K. The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J. Appl. Phys. 1993, 73, 4278–4286. [Google Scholar] [CrossRef] [Green Version]
- Rosa, A.D.; Garbarino, G.; Briggs, R.; Svitlyk, V.; Morard, G.; Bouhifd, M.A.; Jacobs, J.; Irifune, T.; Mathon, O.; Pascarelli, S. Effect of the fcc-hcp martensitic transition on the equation of state of solid krypton up to 140 GPa. Phys. Rev. B 2018, 97, 094115. [Google Scholar] [CrossRef] [Green Version]
- Warren, E. Diffraction of Imperfect Crystals. In X-ray Diffraction, 1st ed.; Dover Publications: New York, NY, USA, 1990; pp. 275–305. [Google Scholar]
- Makinson, J.D.; Lee, J.S.; Magner, S.H.; De Angelis, R.J.; Weins, W.N.; Hieronymus, A.S. X-ray Diffraction Signatures of Defects in Nanocrystalline Materials. Adv. X-ray Anal. 2000, 42, 407–411. [Google Scholar]
- Seo, O.; Sakata, O.; Kim, J.M.; Hiroi, S.; Song, C.; Kumara, L.S.R.; Ohara, K.; Dekura, S.; Kusada, K.; Kobayashi, H.; et al. Stacking fault density and bond orientational order of fcc ruthenium nanoparticles. Appl. Phys. Lett. 2017, 111, 25310–25311. [Google Scholar] [CrossRef]
- Abdala, P.M.; Lamas, D.G.; Fantini, M.C.A.; Craievich, A.F. Retention at room temperature of the tetragonal t”-form in Sc2O3-doped ZrO2 nanopowders. J. Alloys Compd. 2010, 495, 561–564. [Google Scholar] [CrossRef]
- Lamas, D.G.; Lascalea, G.E.; Walsöe De Reca, N.E. Synthesis and Characterization of Nanocrystalline Powders for Partially Stabilized Zirconia Ceramics. J. Eur. Ceram. Soc. 1998, 18, 1217–1221. [Google Scholar] [CrossRef]
- Lamas, D.G.; Rosso, A.M.; Anzorena, M.S.; Fernández, A.; Bellino, M.G.; Cabezas, M.D.; Walsöe de Reca, N.E.; Craievich, A.F. Crystal structure of pure ZrO2 nanopowders. Scr. Mater. 2006, 55, 553–556. [Google Scholar] [CrossRef]
Sample/Parameter | V0 (Å3) | K0 (GPa) | K′0 |
---|---|---|---|
CRYSTAL low pressure | 158.4 ± 0.2 | 195 ± 10 | 5.2 ± 0.7 |
MICRO low pressure | 158.39 ± 0.04 | 202 ± 1 | 4.25 ± 0.04 |
MICRO high pressure | 146.2 ± 0.4 | 219 ± 6 | 4.1 ± 0.1 |
NANO | 159.9 ± 0.2 | 169.5 ± 3 | 5.2 ± 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulin, M.A.; Garbarino, G.; Leyva, A.G.; Mezouar, M.; Sacanell, J.
Pressure Induced Stability Enhancement of Cubic Nanostructured CeO2
Paulin MA, Garbarino G, Leyva AG, Mezouar M, Sacanell J.
Pressure Induced Stability Enhancement of Cubic Nanostructured CeO2
Paulin, Mariano Andrés, Gaston Garbarino, Ana Gabriela Leyva, Mohamed Mezouar, and Joaquin Sacanell.
2020. "Pressure Induced Stability Enhancement of Cubic Nanostructured CeO2
Paulin, M. A., Garbarino, G., Leyva, A. G., Mezouar, M., & Sacanell, J.
(2020). Pressure Induced Stability Enhancement of Cubic Nanostructured CeO2