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Abstract: Ceria (CeO2)-based materials are widely used in applications such as catalysis, fuel cells
and oxygen sensors. Its cubic fluorite structure with a cell parameter similar to that of silicon makes
it a candidate for implementation in electronic devices. This structure is stable in a wide temperature
and pressure range, with a reported structural phase transition to an orthorhombic phase. In this
work, we study the structure of CeO2 under hydrostatic pressures up to 110 GPa simultaneously
for the nanometer- and micrometer-sized powders as well as for a single crystal, using He as the
pressure-transmitting medium. The first-order transition is clearly present for the micrometer-sized
and single-crystal samples, while, for the nanometer grain size powder, it is suppressed up to at
least 110 GPa. We show that the stacking fault density increases by two orders of magnitude in
the studied pressure range and could act as an internal constraint, avoiding the nucleation of the
high-pressure phase.
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1. Introduction

Cerium dioxide, or ceria, is widely known and studied because of its uses in catalysis, as a solid
oxide fuel cell material and, much more recently, as a potential component of spintronic devices due to
its large dielectric constant and the appearance of magnetism in several conditions [1–3]. In ambient
pressure and temperature conditions, ceria presents a cubic fluorite-type structure (Fm3m space group)
with the Ce and O atoms occupying the high-symmetry Wyckoff positions 4a (0,0,0) and 8c ( 1

4 , 1
4 , 1

4 ),
respectively. Several works have been dedicated to the study of the stability of the crystal structure
under pressure [4–7]. Above 30 GPa, a first-order phase transition to an orthorhombic structure has
been shown to occur with a volume jump of 7%. However, there is no consensus regarding the space
group of this phase, and both Pnam [6] and Pbnm [5] have been proposed. Micrometer-sized grains of
ceria have been thoroughly studied and the equation of a state below 130 GPa [7] has been reported,
using neon as the pressure-transmitting media (PTM). In addition, the influence of the particle size
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(powder grain size of 12 nm) was studied by Q. Wang et al. [8], where an unusual behavior below
30 GPa was observed, along with a shift in the phase transition up to at least 40 GPa. This unusual
behavior, which includes a negative compressibility, was observed using silicone oil, methanol/ethanol,
or without a PTM. This result was explained in terms of the difficulty in observing the high-pressure
phase due to the peak broadening related to the nanometric grain size of the powder. Z. Wang et al. [9]
performed a study of the pressure effect on 3 nm ceria nanoparticles up to 65 GPa, without using
a PTM. In that work, no evidence of the structural phase transition was observed up to the highest
applied pressure. Finally, there was a report showing a reduction in the structural phase transition to
20 GPa observed on the nanoparticles of 9–15 nm [10]. To the best of our knowledge, those are the
studies performed on ceria nanoparticles for pressures above 30 GPa. In all of the mentioned cases
involving nanoparticles, the use of silicon oil or a 4:1 methanol/ethanol mixture as the PTM, or their
absences, does not assure the best possible hydrostatic experimental conditions.

These discrepancies are also present in many other materials where the pressure and temperature
phase diagrams of the nanomaterials differ from the bulk parents [11]. The understanding of these
differences is very important as it can offer novel approaches for the engineering of original functional
nanomaterials [11].

In this work, we study the crystal structure of CeO2 under hydrostatic pressures up to 110
GPa simultaneously for nanometer- and micrometer-sized powders as well as for a single-crystal,
using He as the pressure-transmitting medium. The first-order transition is clearly present for the
micrometer-sized and single-crystal samples and is consistent with the literature-reported values.
While for the nanometer grain size powder, it is suppressed up to at least 110 GPa, a pressure four times
larger than the one observed in the other two samples. We were extremely careful about the hydrostatic
conditions during the experiments [12,13]. We carefully prepared the samples to avoid bridging
between the diamonds at the highest applied pressure. We loaded two samples simultaneously in the
same DAC (Diamond Anvil Cell) to guarantee the same experimental conditions. Finally, we show
that the stacking fault density increases two orders of magnitude in the studied pressure range and
could act as an internal constraint, avoiding the nucleation of the high-pressure phase.

2. Materials and Methods

We studied three CeO2 samples, a single-crystal (CRYSTAL, about a 10 µm thick sample),
a micrometer grain size powder (MICRO) [14], and a 4 nm (NANO) grain size powder (see
Supplementary Material S1), by means of high-pressure, high-resolution angular dispersive X-ray
diffraction experiments (λ = 0.3738 Å) at ID27 beamline of the ESRF. A pair of KB mirrors allowed
us to focus the X-ray beam down to 3 × 3 µm2. Three different experiments were performed using
membrane-driven diamond anvil cells (mDAC) with the diamond culets of 300 µm and 150 µm beveled
300 µm. In all of them, ruby and copper powders were used as the pressure markers. In the case of
the powder samples, the 2D XRD images obtained using a Mar CCD 165 detector were integrated
using the PyFAI software [15], as implemented in the DIOPTAS [16] suite. The refinements of the
lattice parameters and peak profiles were done using the Fullprof [17] and GSAS packages [18]. For
the single-crystal measurements, experimental intensities were recorded also using a Mar CCD 165
detector and were reduced with the CrysAlisPro package [19]. During the data collection, the mDAC
was oscillated with 1◦ steps in a 64◦ 2θ range.

3. Results

In the first and second experiments, two grains of the NANO and MICRO samples were loaded
simultaneously in the same mDAC and the pressure was increased up to 70 and 110 GPa, respectively.
In Figure 1a,b, it can be seen that below 26 GPa, both samples present a typical cubic fluorite structure
(low-pressure phase, LP). The MICRO ceria presents narrower peaks than the NANO sample due to
its larger crystallite size. Above 26 GPa, new weak reflections are observed for the MICRO sample
that can be indexed with the reported orthorhombic phase (high-pressure phase, HP). The observed
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phase transition shows a very large coexistence region, which extends up to 70 GPa. However, we only
report the unit cell volume of the LP phase up to around 60 GPa due to the low intensity of the LP
phase peaks at a higher pressure. No significant changes can be observed for the NANO ceria apart
from a broadening in the peaks up to the highest applied pressure of 110 GPa, extending the stability
field of the LP phase to above 1 Mbar, i.e., more than four times the critical pressure observed for the
MICRO ceria.

Finally, a third experiment was performed with the CRYSTAL sample. In Figure 1c,d,
reconstructions of the reciprocal space layers at 10 GPa are presented showing the good crystallographic
quality of the sample. Upon compressions above 30(3) GPa, the structural phase transition from the
LP to the HP phase was also observed with a very small coexistence region. A severe degradation
in the crystallographic sample quality, due to the nature of the transition and the associated volume
reduction, was observed, avoiding any possible single-crystal analysis for the HP phase.
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Figure 1. X-ray diffraction patterns for different pressure of MICRO (a) and NANO (b) CeO2, symbols
* and † represent reflections from Helium and Rhenium, respectively. (c) and (d) show reciprocal space
reconstructions of (h1l) and (hkh) layers, respectively, of the single-crystal at 10 GPa.

In Figure 2, the pressure dependence of the LP phase lattice parameter (aCUBIC) is presented for
the three samples.

Figure 1. X-ray diffraction patterns for different pressure of MICRO (a) and NANO (b) CeO2, symbols
* and † represent reflections from Helium and Rhenium, respectively. (c) and (d) show reciprocal space
reconstructions of (h1l) and (hkh) layers, respectively, of the single-crystal at 10 GPa.

In Figure 2, the pressure dependence of the LP phase lattice parameter (aCUBIC) is presented for
the three samples.
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It can be clearly observed that at room pressure the MICRO and CRYSTAL samples present smaller
lattice parameters than the NANO counterpart. This effect can be related to the presence of Ce3+, with a
larger ionic radius than Ce4+, in the surface of the nanoparticles [20,21]. Under this assumption [22,23],
we were able to estimate that an amount of 1.8% of Ce3+ was responsible for the observed differences
in the cell parameters of the NANO sample compared with the MICRO and CRYSTAL samples (see
Supplementary Material S2). This is in good agreement with the results published in the literature
data, where a vacancy content of 1.7% was reported for a 3 nm Ceria [9].

For the CRYSTAL and MICRO samples, and the pressure marker (copper), the lattice parameters
at each pressure were obtained by a LeBail refinement of the integrated 2D images, whereas for the
NANO sample, each peak was fitted independently using a pseudo-Voigt profile in a MATLAB code,
and we obtained the measured lattice parameters, am(hkl), obtained for the Bragg peak (hkl). This was
done because the LeBail refinement of the diffractogram of the NANO sample never gave a good factor
of merit.

The am(hkl) differences increase for pressures above ~50 GPa, see Figure 2a. In Figure 2b, we
show the logarithmic derivative of the lattice parameters respective to the pressure, χhkl, for both the
MICRO and NANO samples. We can also clearly observe a deviation in χ111 and χ200 above 50 GPa,
as observed in the ratio χ200/χ111 plotted in Figure 2c.
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Figure 2. (a) Lattice parameters of the cubic structure (aCUBIC) for the CRYSTAL, MICRO and NANO
samples in the function of pressure. In the case of the NANO sample, the cubic lattice parameter was
calculated for each independent reflection ((111), (200), (220) and (311)). (b) Pressure dependence of the
logarithmic derivative of the lattice parameter respect to the pressure, χhkl for both the MICRO and
NANO samples. (c) Pressure dependence of the ratio χ200/χ111; a clear deviation from pressure above
50 GPa can be observed.
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4. Discussion

In order to clarify the origin of this discrepancy, we considered the possible effect of non-hydrostatic
conditions, as proposed by A.K. Singh [24]. As is discussed in the Supplementary Material (S3),
non-hydrostatic conditions could be excluded as the origin of the variation in the am(hkl).

As already mentioned, cerium dioxide presents a cubic fluorite with the Ce4+ ions forming a face
center cubic (fcc) structure, and with most fcc compounds, stacking faults along the crystallographic
(111) direction are very susceptible to occur [25,26]. Using the formalism developed by E. Warren [26,27],
the effect of stacking faults on fcc crystals can be expressed by the shifts of the peak position and
its broadening. Many examples studying stacking fault density have already been published in fcc
nanomaterials [28]. The peak shift in the (hkl) reflection, ∆(2θ)

◦
(hkl), can be calculated in terms of

the stacking fault probability α, and in particular for the (111) and (200) peaks, it can be expressed
as follows

∆(2θ)
◦
(111) = (1/4) 90

√
3 α tan

(
θ(111)

)
/π2 (1)

∆(2θ)
◦
(200) = (−1/2) 90

√
3 α tan

(
θ(200)

)
/π2 (2)

where θ(111) and θ(200) are the experimental-obtained positions of the (111) and (200) reflections,
respectively. The effect of stacking faults can be also calculated on the higher-order reflections, (220)
and (311) replacing the prefactor (1/4) and (−1/2) by (1/4) and (−1/11), respectively.

Using Equation (1) and Equation (2), we can calculate and define aNANO as the lattice parameter
without a stacking fault effect as aNANO = a(hkl) + ∆ahkl. In that case, we can express:

aNANO = a(111) + ∆a(111) = a(200) + ∆a(200) (3)

Using the Bragg law and some algebra, we can express ∆ahkl in terms of ∆(2θ)(hkl), and finally α

in terms of θ(111) and θ(200), as the following:

α =
(
16 π/

√
3
) [

sin
(
θ(111)

)
− √3/2 sin

(
θ(200)

)][
2 sin

(
θ(111)

)
+
√

3/2 sin
(
θ(200)

)] (4)

Using Equation (4), we obtained the pressure dependence of α, as can be seen in Figure 3. We can
observe that at room pressure it shows a value of 0.02 that increases almost linearly to 0.04 up to 20
GPa, and then remains constant up to around 50 GPa, the pressure at which another linear increase
is observed up to the highest applied pressure. This graph shows that the density of stacking faults
increases dramatically above 50 GPa, reaching 0.3 at 110 GPa, more than two orders of magnitude
higher than its value at room pressure.

Consequently, we could correlate the enhancement of the stability field of the room pressure cubic
structure up to at least 110 GPa in the NANO sample with the withdrawal of the nucleation centers of
the high-pressure phase, due to the increase in the stacking fault density above the critical pressure
observed in the MICRO and CRYSTAL samples.



Nanomaterials 2020, 10, 650 6 of 9

Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 9 

 

 
Figure 3. Pressure dependence of the stacking fault density calculated for the NANO sample using 
Equation (4), see text. 

Similar behavior was observed in artificially synthesized fcc Ru nanoparticles with diameters 
ranging from 2.4 to 5.4 nm, in which, even though the nanoparticle size increased, the grain growth 
did not occur due to the high stacking fault densities up to 0.48 ± 0.20 [Error! Bookmark not defined.]. 
It was also reported that the retention of high-temperature structural phases at room temperature in 
the ZrO2 nanostructured compounds occurred [29–31]. In our case, the increase in the stacking fault 
density and the reduced crystallite size could act as an internal constraint that inhibits the nucleation 
of the high-pressure orthorhombic phase, extending the stability field of the cubic low-pressure 
phase. In order to gain a deeper thermodynamic analysis, the contributions of both the stacking fault 
density and nanostructuration effects should be considered in the total free energy of the cubic and 
orthorhombic phases. These extra contributions could increase the relative enthalpy difference of the 
cubic phase respective to the orthorhombic phase, inducing the stabilization of the cubic phase at 
pressures well above the critical pressure observed in the MICRO and CRYSTAL samples.  

Once α is obtained, we are able to calculate , using: =  ℎ + + 2 sin( ( ) + Δ ( ))  (5) 

In Figure 4, we plot the experimental pressure dependence of the unit cell volume obtained for 
the CRYSTAL, MICRO and NANO samples. We can observe a very good agreement of the data 
obtained for the NANO sample with the (111) and (200) reflections, but also for the independent (220) 
and (311) reflections. By using a third-order Birch–Murnaghan equation of state (EOS), as shown in 
Equation (6), we got the room pressure volume (V0), the bulk modulus (K0) and its first pressure 
derivative (K’0).  = 3 2⁄ ( ⁄ ) ⁄ − ( ⁄ ) ⁄ 1 + 3 4⁄ ( − 4) ( ⁄ ) ⁄ − 1  (6) 

0 20 40 60 80 100 120
0.02

0.1

0.4

al
ph

a

P (GPa)
Figure 3. Pressure dependence of the stacking fault density calculated for the NANO sample using
Equation (4), see text.

Similar behavior was observed in artificially synthesized fcc Ru nanoparticles with diameters
ranging from 2.4 to 5.4 nm, in which, even though the nanoparticle size increased, the grain growth
did not occur due to the high stacking fault densities up to 0.48 ± 0.20 [28]. It was also reported that
the retention of high-temperature structural phases at room temperature in the ZrO2 nanostructured
compounds occurred [29–31]. In our case, the increase in the stacking fault density and the reduced
crystallite size could act as an internal constraint that inhibits the nucleation of the high-pressure
orthorhombic phase, extending the stability field of the cubic low-pressure phase. In order to
gain a deeper thermodynamic analysis, the contributions of both the stacking fault density and
nanostructuration effects should be considered in the total free energy of the cubic and orthorhombic
phases. These extra contributions could increase the relative enthalpy difference of the cubic phase
respective to the orthorhombic phase, inducing the stabilization of the cubic phase at pressures well
above the critical pressure observed in the MICRO and CRYSTAL samples.

Once α is obtained, we are able to calculate αNANO, using:

αNANO = λ
√

h2 + k2 + l2/
(
2 sin

(
θ(hkl) + ∆θ(hkl)

))
(5)

In Figure 4, we plot the experimental pressure dependence of the unit cell volume obtained for the
CRYSTAL, MICRO and NANO samples. We can observe a very good agreement of the data obtained
for the NANO sample with the (111) and (200) reflections, but also for the independent (220) and (311)
reflections. By using a third-order Birch–Murnaghan equation of state (EOS), as shown in Equation (6),
we got the room pressure volume (V0), the bulk modulus (K0) and its first pressure derivative (K’

0).

P = 3/2K0
[
(V0/V)7/3 − (V0/V)5/3

]{
1 + 3/4

(
K′0 − 4

)[
(V0/V)2/3 − 1

]}
(6)

A very good agreement between the experimental data and the fit is obtained, as shown in the
insert of Figure 4, where the difference between the data and fit is plotted in the function of pressure.
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For comparison, the difference is plotted for the MICRO and NANO samples obtaining deviations
below 1 GPa, even at the maximum applied pressure. The obtained parameters for the EOS are shown
in Table 1 for the three samples. We obtained for the MICRO and CRYSTAL samples a bulk modulus
(K0) value in very good agreement with the reported values. In the case of the NANO sample, the K0 is
significantly smaller.
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Figure 4. (a) Pressure dependence of the unit cell volume obtained using a LeBail refinement for the
CRYSTAL and MICRO samples and using Equation (5) for the NANO sample in order to get the volume
without the effect of stacking faults (see text). (b) Pressure dependence of the difference between the
experimental data and the third-order Birch–Murnaghan equation of state.

Table 1. The equation of state parameters for the CRYSTAL, MICRO and NANO samples. For the
CRYSTAL sample, only the low-pressure phase parameters are presented. For the MICRO sample, the
low- and high-pressure parameters are shown.

Sample/Parameter V0 (Å3) K0 (GPa) K′0

CRYSTAL low pressure 158.4 ± 0.2 195 ± 10 5.2 ± 0.7

MICRO low pressure 158.39 ± 0.04 202 ± 1 4.25 ± 0.04

MICRO high pressure 146.2 ± 0.4 219 ± 6 4.1 ± 0.1

NANO 159.9 ± 0.2 169.5 ± 3 5.2 ± 0.1

5. Conclusions

In conclusion, we studied the crystal structure of CeO2 under hydrostatic pressures up to 110
GPa simultaneously for samples with crystallite sizes covering four orders of magnitude, using He as
the pressure-transmitting medium. A first-order phase transition occurring at 26(1) and 30(3) GPa is
present for the MICRO and CRYSTAL samples, respectively, while for the NANO sample, it is inhibited
up to a pressure at least four times larger. We showed that the stacking fault density increases by two
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orders of magnitude in this pressure range and that it could act as an internal constraint, avoiding the
nucleation of the high-pressure phase.

Further thermodynamic analysis should consider the contributions of both the stacking fault
density and nanostructuration effects in the total free energy of the cubic and orthorhombic phases. A
detailed analysis of these extra contributions could increase the relative enthalpy difference of the cubic
phase respective to the orthorhombic phase, inducing the stabilization of the cubic phase at pressures
well above the critical pressure reported for the MICRO and CRYSTAL samples. A dedicated work
is in progress to evaluate these contributions. Finally, the control of phase transitions through the
manipulation of stacking faults can benefit particular applications as it opens a path for the study of
other compounds in which the retention of a particular phase could be affected via nanostructuration
and pressure or doping, as has been shown for several ZrO2 compounds.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/4/650/s1,
Figure S1: (a) Gamma plot for selected pressures for the NANO sample where the am(hkl) is normalized using
its value at abscise equal to 0, i.e., Γ = 0. (b) Pressure evolution of the obtained intercept (M0/am (Γ = 0)), slope
(M1/am (Γ = 0)) and the coefficient of determination R2.
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