Design of Experiments-Assisted Development of Clotrimazole-Loaded Ionic Polymeric Micelles Based on Hyaluronic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polymeric Micelles Preparation
2.3. Polymeric Micelles Characterization
2.3.1. Dimensional Analysis and Zeta Potential
2.3.2. Pyrene Spectra
2.3.3. HPLC-UV Determination of Clotrimazole in the Formulations
2.4. Design of Experiments
2.4.1. Full Factorial Screening Design
2.4.2. Central Composite Design and Mixture Design
2.5. Physicochemical Characterization sxw2
2.5.1. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.5.2. Differential Scanning Calorimetry (DSC) and Thermogravimetric (TGA) Analysis
3. Results and Discussion
3.1. Comparison of the HA/DDA and HA/HDA Systems
3.2. Design of Experiments Analysis
3.2.1. Full Factorial Screening Design
3.2.2. Central Composite Design
3.2.3. Mixture design
3.3. Physicochemical Characterization of the Optimized Micelle Formulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kawabata, Y.; Wada, K.; Nakatani, M.; Yamada, S.; Onoue, S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int. J. Pharm. 2011, 420, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Stern, R.; Asari, A.; Sugahara, K. Hyaluronan fragments: An information-rich system. Eur. J. Cell Biol. 2006, 85, 699–715. [Google Scholar] [CrossRef] [PubMed]
- Schanté, C.E.; Zubera, G.; Herlin, C.; Vandamme, T.F. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr. Polym. 2011, 85, 469–489. [Google Scholar] [CrossRef]
- Dosio, F.; Arpicco, S.; Stella, B.; Fattal, E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv. Drug Deliv. Rev. 2016, 97, 204–236. [Google Scholar] [CrossRef]
- Tripodo, G.; Trapani, A.; Torre, M.L.; Giammona, G.; Trapani, G.; Mandracchia, D. Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges. Eur. J. Pharm. Biopharm. 2015, 97, 400–416. [Google Scholar] [CrossRef] [PubMed]
- Melo, C.M.; Cardoso, J.F.; Perassoli, F.B.; de Oliveira Neto, A.S.; Pinto, L.M.; de Freitas Marques, M.B.; da Nova Mussel, W.; Magalhães, J.T.; de Lima Moura, S.A.; de Freitas Araújo, M.G.; et al. Amphotericin B-loaded Eudragit RL100 nanoparticles coated with hyaluronic acid for the treatment of vulvovaginal candidiasis. Carbohydr. Polym. 2020, 230, 115608. [Google Scholar] [CrossRef]
- Witting, M.; Boreham, A.; Brodwolf, R.; Vávrová, K.; Alexiev, U.; Friess, W.; Hedtrich, S. Interactions of Hyaluronic Acid with the Skin and Implications for the Dermal Delivery of Biomacromolecules. Mol. Pharm. 2015, 12, 1391–1401. [Google Scholar] [CrossRef]
- Motiei, M.; Kashanian, S.; Luciad, L.A.; Khazaei, M. Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. J. Control. Release 2017, 260, 213–225. [Google Scholar] [CrossRef]
- Choi, K.Y.; Chung, H.; Min, K.H.; Yoon, H.Y.; Kim, K.; Park, J.H.; Kwon, I.C.; Jeong, S.Y. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 2010, 31, 106–114. [Google Scholar] [CrossRef]
- Zhang, M.; Asghar, S.; Jin, X.; Hua, Z.; Ping, Q.; Chen, Z.; Shao, F.; Xiao, Y. The enhancing effect of N-acetylcysteine modified hyaluronic acid- octadecylamine micelles on the oral absorption of paclitaxel. Int. J. Biol. Macromol. 2019, 138, 636–647. [Google Scholar] [CrossRef]
- Payne, W.M.; Svechkarev, D.; Kyrychenko, A.; Mohs, A.M. The role of hydrophobic modification on hyaluronic acid dynamics and self-assembly. Carbohydr. Polym. 2018, 182, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Smejkalová, D.; Nešporová, K.; Hermannová, M.; Huerta-Angeles, G.; Cožíková, D.; Vištejnová, L.; Safránková, B.; Novotný, J.; Kučerík, J.; Velebný, V. Paclitaxel isomerisation in polymeric micelles based on hydrophobized hyaluronic acid. Int. J. Pharm. 2014, 466, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Šmejkalová, D.; Muthný, T.; Nešporová, K.; Hermannová, M.; Achbergerová, E.; Huerta-Angeles, G.; Svoboda, M.; Čepa, M.; Machalová, V.; Luptáková, D.; et al. Hyaluronan polymeric micelles for topical drug delivery. Carbohydr. Polym. 2017, 156, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Starigazdová, J.; Nešporová, K.; Čepa, M.; Šínová, R.; Šmejkalová, D.; Huerta-Angeles, G.; Velebný, V. In vitro investigation of hyaluronan-based polymeric micelles for drug delivery into the skin: The internalization pathway. Eur. J. Pharm. Sci. 2020, 143, 105168. [Google Scholar] [CrossRef] [PubMed]
- Bonferoni, M.C.; Sandri, G.; Dellera, E.; Rossi, S.; Ferrari, F.; Zambito, Y.; Caramella, C. Palmitoyl glycol chitosan micelles for corneal delivery of cyclosporine. J. Biomed. Nanotechnol. 2016, 12, 231–240. [Google Scholar] [CrossRef]
- Bonferoni, M.C.; Sandri, G.; Dellera, E.; Rossi, S.; Ferrari, F.; Mori, M.; Caramella, C. Ionic polymeric micelles based on chitosan and fatty acids and intended for wound healing. Comparison of linoleic and oleic acid. Eur. J. Pharm. Biopharm. 2014, 87, 101–106. [Google Scholar] [CrossRef]
- Dellera, E.; Bonferoni, M.C.; Sandri, G.; Rossi, S.; Ferrari, F.; Del Fante, C.; Perotti, C.; Grisoli, P.; Caramella, C. Development of chitosan oleate ionic micelles loaded with silver sulfadiazine to be associated with platelet lysate for application in wound healing. Eur. J. Pharm. Biopharm. 2014, 88, 643–650. [Google Scholar] [CrossRef]
- Motiei, M.; Kashanian, S. Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs. Eur. J. Pharm. Sci. 2017, 99, 285–291. [Google Scholar] [CrossRef]
- ICH. Harmonised Tripartite Guideline. Pharmaceutical Development Q8(R2). 2009. Available online: https://database.ich.org/sites/default/files/Q8_R2_Guideline.pdf (accessed on 23 March 2020).
- Paulo, F.; Santos, L. Design of experiments for microencapsulation applications: A review. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 1327–1340. [Google Scholar] [CrossRef]
- Li, J.; Qiao, Y.; Wu, Z. Nanosystem trends in drug delivery using quality-by-design concept. J. Control. Release 2017, 256, 9–18. [Google Scholar] [CrossRef]
- Salimi, A.; Zadeh, B.S.M.; Kazemi, M. Preparation and optimization of polymeric micelles as an oral drug delivery system for deferoxamine mesylate: In vitro and ex vivo studies. Res. Pharm. Sci. 2019, 14, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Fares, A.R.; ElMeshad, A.N.; Kassem, M.A.A. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: Formulation, optimization using central composite design and in vivo bioavailability study. Drug Deliv. 2018, 25, 132–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saadat, E.; Amini, M.; Khoshayand, M.R.; Dinarvand, R.; Dorkoosh, F.A. Synthesis and optimization of a novel polymeric micelle based on hyaluronic acid and phospholipids for delivery of paclitaxel, in vitro and in-vivo evaluation. Int. J. Pharm. 2014, 475, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Kalyanasundaram, K.; Thomas, J.K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 1977, 99, 2039–2044. [Google Scholar] [CrossRef]
- Wang, W.; McConaghy, A.M.; Tetley, L.; Uchegbu, I. Controls on polymer molecular weight may be used to control the size of palmitoyl glycol chitosan polymeric vesicles. Langmuir 2001, 17, 631–636. [Google Scholar] [CrossRef]
- Cornell, J. Experiments with Mixtures. Designs, Models, and the Analysis of Mixture Data, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- De Aguiar, P.F.; Bourguignon, B.; Khots, M.S.; Massart, D.L.; Phan-Tan-Luu, R. D-optimal designs. Chemom. Intell. Lab. Syst. 1995, 30, 199–210. [Google Scholar] [CrossRef]
- Mittapalli, S.; Mannava, M.C.; Khandavilli, U.R.; Allu, S.; Nangia, A. Soluble salts and cocrystals of clotrimazole. Cryst. Growth Des. 2015, 15, 2493–2504. [Google Scholar] [CrossRef]
- Saadatfar, F.; Shayanfar, A.; Rahimpour, E.; Barzegar-Jalali, M.; Fleming Martinez, F.; Bolourtchian, M.; Jouyban, A. Measurement and correlation of clotrimazole solubility in ethanol + water mixtures at T = (293.2 to 313.2) K. J. Mol. Liq. 2018, 256, 527–532. [Google Scholar] [CrossRef]
- Cafaggi, S.; Leardi, R.; Parodi, B.; Caviglioli, G.; Bignardi, G. An example of application of a mixture design with constraints to a pharmaceutical formulation. Chemom. Intell. Lab. Syst. 2003, 65, 139–147. [Google Scholar] [CrossRef]
- Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 2006, 28, 359–370. [Google Scholar] [CrossRef]
- O’Hanlon, D.E.; Come, R.A.; Moench, T.R. Vaginal pH measured in vivo: Lactobacilli determine pH and lactic acid concentration. BMC Microbiol. 2019, 19, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Component | Composition Limits | |
---|---|---|
Minimum Amount (% w/w) | Maximum Amount (% w/w) | |
Hyaluronic Acid (HA) | 56 | 80 |
Hexadecylamine (HDA) | 4 | 33 |
Cholesterol (CHOL) | 10 | 22 |
Unloaded Micelles | Pyrene Loaded Micelles | |||
---|---|---|---|---|
PS (nm) | PI | PS (nm) | PI | |
HA/DDA | 427 (± 47) | 0.67 (± 0.23) | 487 (± 35) | 0.90 (±0.29) |
HA/HDA | 419 (± 8.6) | 0.75 (± 0.015) | 204 (± 17) | 0.39 (± 0.05) |
I372 | I383 | RIII/I | |
---|---|---|---|
Water | 219.85 | 146.99 | 0.67 |
Micelles HA/DDA | 164.10 | 119.12 | 0.73 |
Micelles HA/HDA | 346.15 | 317.41 | 0.87 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
A: HA/HDA ratio | 528.12 | 1 | 528.12 | 4.22 | 0.10 |
B: CHOL% | 6.48 | 1 | 6.48 | 0.05 | 0.831 |
C: Temperature | 480.5 | 1 | 480.5 | 3.84 | 0.122 |
AB: HA/HDA ratio: CHOL% | 4.21 | 1 | 4.21 | 0.03 | 0.863 |
AC: HA/HDA ratio:Temperature | 146.21 | 1 | 146.21 | 1.17 | 0.340 |
BC: CHOL%:Temperature | 1635.92 | 1 | 1635.92 | 13.08 | 0.022 |
Total error | 500.11 | 4 | 125.03 | ||
Total (corr.) | 3301.54 | 10 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
A: HA/HDA ratio | 10.465 | 1 | 10.465 | 4.14 | 0.112 |
B: CHOL% | 27.343 | 1 | 27.343 | 10.81 | 0.030 |
C: Temperature | 7.508 | 1 | 7.5078 | 2.97 | 0.160 |
AB: HA/HDA ratio: CHOL% | 38.852 | 1 | 38.852 | 15.36 | 0.017 |
AC: HA/HDA ratio: Temperature | 22.412 | 1 | 22.412 | 8.86 | 0.041 |
BC: CHOL%: Temperature | 22.412 | 1 | 22.412 | 8.86 | 0.041 |
Total error | 10.118 | 4 | 2.529 | ||
Total (corr.) | 139.109 | 10 |
Exp# | HA | HDA | CHOL | CLO Predicted ± CI (95%) (µg/mL) | CLO Concentration Found (*) (µg/mL) | Relative Error (**) (%) |
---|---|---|---|---|---|---|
1 | 0.570 | 0.330 | 0.100 | 17.6 ± 4.9 | 18.37 | 4 |
2 | 0.560 | 0.270 | 0.170 | 10.2 ± 3.9 | 9.23 | −10 |
3 | 0.660 | 0.210 | 0.130 | 6.1 ± 4.0 | 6.67 | 8 |
4 | 0.800 | 0.040 | 0.160 | 9.2 ± 4.3 | 10.06 | 8 |
5 | 0.590 | 0.190 | 0.220 | 4.7 ± 3.3 | 5.23 | 11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catenacci, L.; Marrubini, G.; Sorrenti, M.; Rossi, S.; Sandri, G.; Ferrari, F.; Fagnani, V.; Valentino, C.; Bonferoni, M.C. Design of Experiments-Assisted Development of Clotrimazole-Loaded Ionic Polymeric Micelles Based on Hyaluronic Acid. Nanomaterials 2020, 10, 635. https://doi.org/10.3390/nano10040635
Catenacci L, Marrubini G, Sorrenti M, Rossi S, Sandri G, Ferrari F, Fagnani V, Valentino C, Bonferoni MC. Design of Experiments-Assisted Development of Clotrimazole-Loaded Ionic Polymeric Micelles Based on Hyaluronic Acid. Nanomaterials. 2020; 10(4):635. https://doi.org/10.3390/nano10040635
Chicago/Turabian StyleCatenacci, Laura, Giorgio Marrubini, Milena Sorrenti, Silvia Rossi, Giuseppina Sandri, Franca Ferrari, Valentina Fagnani, Caterina Valentino, and Maria Cristina Bonferoni. 2020. "Design of Experiments-Assisted Development of Clotrimazole-Loaded Ionic Polymeric Micelles Based on Hyaluronic Acid" Nanomaterials 10, no. 4: 635. https://doi.org/10.3390/nano10040635
APA StyleCatenacci, L., Marrubini, G., Sorrenti, M., Rossi, S., Sandri, G., Ferrari, F., Fagnani, V., Valentino, C., & Bonferoni, M. C. (2020). Design of Experiments-Assisted Development of Clotrimazole-Loaded Ionic Polymeric Micelles Based on Hyaluronic Acid. Nanomaterials, 10(4), 635. https://doi.org/10.3390/nano10040635