Chemical Sensing and Chemoresponsive Pumping with Conical-Pore Polymeric Membranes
Abstract
:1. Introduction
2. Conical Pore Membrane Fabrication
3. Ion-Current and Electroosmotic Flow Rectification in Conical Pore Membranes
4. Ion-Current Rectification-Based Sensing
5. Alternating Current EOF Pump
6. Chemoresponsive Nanofluidic Pump
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Xuan, X.C. Ion separation in nanofluidics. Electrophoresis 2008, 29, 3737–3743. [Google Scholar] [CrossRef] [PubMed]
- Kovarik, M.L.; Jacobson, S.C. Nanofluidics in lab-on-a-chip devices. Anal. Chem. 2009, 81, 7133–7140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segerink, L.I.; Eijkel, J.C.T. Nanofluidics in point of care applications. Lab Chip 2014, 14, 3201–3205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgreen, D.; Nakache, F.R. Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 1964, 68, 1084–1091. [Google Scholar] [CrossRef]
- Rice, C.L.; Whitehead, R. Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 1965, 69, 4017–4024. [Google Scholar] [CrossRef]
- Plecis, A.; Schoch, R.B.; Renaud, P. Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett. 2005, 5, 1147–1155. [Google Scholar] [CrossRef]
- Jin, X.Z.; Aluru, N.R. Gated transport in nanofluidic devices. Microfluid. Nanofluid. 2011, 11, 297–306. [Google Scholar] [CrossRef]
- Haywood, D.G.; Saha-Shah, A.; Baker, L.A.; Jacobson, S.C. Fundamental studies of nanofluidics: Nanopores, nanochannels, and nanopipets. Anal. Chem. 2015, 87, 172–187. [Google Scholar] [CrossRef] [Green Version]
- Jin, P.; Mukaibo, H.; Horne, L.P.; Bishop, G.W.; Martin, C.R. Electroosmotic flow rectification in pyramidal-pore mica membranes. J. Am. Chem. Soc. 2010, 132, 2118–2119. [Google Scholar] [CrossRef]
- Bishop, G.W.; Lopez, M.M.; Rajasekaran, P.R.; Wu, X.J.; Martin, C.R. Electroosmotic flow rectification in membranes with asymmetrically shaped pores: Effects of current and pore density. J. Phys. Chem. C 2015, 119, 16633–16638. [Google Scholar] [CrossRef]
- Wu, X.; Ramiah Rajasekaran, P.; Martin, C.R. An alternating current electroosmotic pump based on conical nanopore membranes. ACS Nano 2016, 10, 4637–4643. [Google Scholar] [CrossRef] [PubMed]
- Harrell, C.C.; Choi, Y.; Horne, L.P.; Baker, L.A.; Siwy, Z.S.; Martin, C.R. Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir 2006, 22, 10837–10843. [Google Scholar] [CrossRef]
- Wu, X.; Experton, J.; Xu, W. Chemoresponsive nanofluidic pump that turns off in the presence of lead ion. Anal. Chem. 2018, 90, 7715–7720. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Bard, A.J.; Feldberg, S.W. Current rectification at quartz nanopipet electrodes. Anal. Chem. 1997, 69, 4627–4633. [Google Scholar] [CrossRef]
- Siwy, Z.S. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 2006, 16, 735–746. [Google Scholar] [CrossRef]
- Lewis, R. Chapter 2—Diodes. In Solid–State Devices and Applications; Newnes: Boston, MA, USA, 1971; pp. 12–27. [Google Scholar]
- Li, S.S. P—N junction diodes. In Semiconductor Physical Electronics; Li, S.S., Ed.; Springer: Boston, MA, USA, 1993; pp. 287–326. [Google Scholar]
- Experton, J.; Wu, X.; Martin, C.R. From ion current to electroosmotic flow rectification in asymmetrical nanopore membranes. Nanomaterials 2017, 7, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, B.E.; Spohr, R. Production and use of nuclear tracks—Imprinting structure on solids. Rev. Mod. Phys. 1983, 55, 907–948. [Google Scholar] [CrossRef]
- Apel, P.Y.; Korchev, Y.E.; Siwy, Z.; Spohr, R.; Yoshida, M. Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Methods Phys. Res. Sect. B 2001, 184, 337–346. [Google Scholar] [CrossRef]
- Apel, P. Track etching technique in membrane technology. Radiat. Meas. 2001, 34, 559–566. [Google Scholar] [CrossRef]
- Pra, L.D.; Ferain, E.; Legras, R.; Demoustier-Champagne, S. Fabrication of a new generation of track-etched templates and their use for the synthesis of metallic and organic nanostructures. Nucl. Instr. Methods Phys. Res. B 2002, 196, 81–88. [Google Scholar]
- Dejardin, P.; Vasina, E.N.; Berezkin, V.V.; Sobolev, V.D.; Volkov, V.I. Streaming potential in cylindrical pores of poly(ethylene terephthalate) track-etched membranes: Variation of apparent zeta potential with pore radius. Langmuir 2005, 21, 4680–4685. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.M.; Xie, Y.B.; Yan, Y.; Ke, J.; Wang, Y.G. Surface charge density of the track-etched nanopores in polyethylene terephthalate foils. Biomicrofluidics 2009, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keesom, W.H.; Zelenka, R.L.; Radke, C.J. A zeta-potential model for ionic surfactant adsorption on an ionogenic hydrophobic surface. J. Colloid Interface Sci. 1987, 125, 575–585. [Google Scholar] [CrossRef]
- Wang, J.H.; Martin, C.R. A new drug-sensing paradigm baed on ion-current rectification in a conically shaped nanopore. Nanomedicine 2008, 3, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sexton, L.T.; Horne, L.P.; Martin, C.R. Developing synthetic conical nanopores for biosensing applications. Mol. Biol. Syst. 2007, 3, 667–685. [Google Scholar] [CrossRef] [PubMed]
- Li, N.C.; Yu, S.F.; Harrell, C.C.; Martin, C.R. Conical nanopore membranes. Preparation and transport properties. Anal. Chem. 2004, 76, 2025–2030. [Google Scholar] [CrossRef] [PubMed]
- Harrell, C.C.; Siwy, Z.S.; Martin, C.R. Conical nanopore membranes: Controlling the nanopore shape. Small 2006, 2, 194–198. [Google Scholar] [CrossRef]
- Menon, V.P.; Martin, C.R. Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem. 1995, 67, 1920–1928. [Google Scholar] [CrossRef]
- Scopece, P.; Baker, L.A.; Ugo, P.; Martin, C.R. Conical nanopore membranes: Solvent shaping of nanopores. Nanotechnology 2006, 17, 3951–3956. [Google Scholar] [CrossRef]
- Guo, P.; Hall, E.W.; Schirhagl, R.; Mukaibo, H.; Martin, C.R.; Zare, R.N. Microfluidic capture and release of bacteria in a conical nanopore array. Lab Chip 2012, 12, 558–561. [Google Scholar] [CrossRef]
- Fleischer, R.L.; Price, P.B.; Walker, R.M. Nuclear Tracks in Solids: Principles and Applications; University of California Press: London, UK, 1975. [Google Scholar]
- Warkiani, M.E.; Bhagat, A.A.S.; Khoo, B.L.; Han, J.; Lim, C.T.; Gong, H.Q.; Fane, A.G. Isoporous micro/nanoengineered membranes. ACS Nano 2013, 7, 1882. [Google Scholar] [CrossRef] [PubMed]
- Apel, P.Y.; Blonskaya, I.V.; Orelovitch, O.L.; Ramirez, P.; Sartowska, B.A. Effect of nanopore geometry on ion current rectification. Nanotechnology 2011, 22, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovarik, M.L.; Zhou, K.M.; Jacobson, S.C. Effect of conical nanopore diameter on ion current rectification. J. Phys. Chem. B 2009, 113, 15960–15966. [Google Scholar] [CrossRef] [PubMed]
- Kubeil, C.; Bund, A. The role of nanopore geometry for the rectification of ionic currents. J. Phys. Chem. C 2011, 115, 7866–7873. [Google Scholar] [CrossRef]
- Pietschmann, J.F.; Wolfram, M.T.; Burger, M.; Trautmann, C.; Nguyen, G.; Pevarnik, M.; Bayer, V.; Siwy, Z. Rectification properties of conically shaped nanopores: Consequences of miniaturization. Phys. Chem. Chem. Phys. 2013, 15, 16917–16926. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, P.; Apel, P.Y.; Cervera, J.; Mafe, S. Pore structure and function of synthetic nanopores with fixed charges: Tip shape and rectification properties. Nanotechnology 2008, 19, 12. [Google Scholar] [CrossRef]
- Siwy, Z.; Apel, P.; Dobrev, D.; Neumann, R.S.; Trautmann, C.; Voss, K. Ion transport through asymmetric nanopores prepared by ion track etching. Nucl. Instrum. Methods Phys. Res. Sect. B 2003, 208, 194–198. [Google Scholar] [CrossRef]
- Miller, S.A.; Young, V.Y.; Martin, C.R. Electroosmotic flow in template-prepared carbon nanotube membranes. J. Am. Chem. Soc. 2001, 123, 12335–12342. [Google Scholar] [CrossRef]
- Chen, P.; Gu, J.; Brandin, E.; Kim, Y.R.; Wang, Q.; Branton, D. Probing single DNA molecule transport using fabricated nanopores. Nano Lett. 2004, 4, 2293–2298. [Google Scholar] [CrossRef] [Green Version]
- Siwy, Z.; Heins, E.; Harrell, C.C.; Kohli, P.; Martin, C.R. Conical-nanotube ion-current rectifiers: The role of surface charge. J. Am. Chem. Soc. 2004, 126, 10850–10851. [Google Scholar] [CrossRef]
- Somasundaran, P.; Krishnakumar, S. Adsorption of surfactants and polymers at the solid-liquid interface. Colloids Surf. A 1997, 123–124, 491–513. [Google Scholar] [CrossRef]
- Teng, M.; Usman, N.; Frederick, C.A.; Wang, A.H.-J. The molecular structure of the complex of Hoechst 33258 and the DNA dodecamer d(CGCGAATTCGCG). Nucleic Acids Res. 1988, 16, 2671–2690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.Y.; Cheng, C.; Wang, S.L.; Liu, S.R. Electroosmotic pumps and their applications in microfluidic systems. Microfluid. Nanofluid. 2009, 6, 145–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erlandsson, P.G.; Robinson, N.D. Electrolysis-reducing electrodes for electrokinetic devices. Electrophoresis 2011, 32, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Yao, S.H.; Posner, J.D.; Myers, A.M.; Santiago, J.G. Toward orientation-independent design for gas recombination in closed-loop electroosmotic pumps. Sens. Actuators B 2007, 128, 334–339. [Google Scholar] [CrossRef]
- Gao, M.; Gui, L. Electroosmotic Flow Pump. In Advances in Microfluidics—New Applications in Biology, Energy, and Materials Sciences; Yu, X.-Y., Ed.; InTech: Rijeka, Croatia, 2016; Chapter 10. [Google Scholar]
- Rodriguez, L.J.; Liesegang, G.W.; Farrow, M.M.; Purdie, N.; Eyring, E.M. Kinetic studies of complexation of divalent strontium, barium, lead and mercury cations by aqueous 15-crown-5 and 18-crown-6. J. Phys. Chem. 1978, 82, 647–650. [Google Scholar] [CrossRef]
- Tavakkoli, N.; Shamsipur, M. Lead selective electrode membrane based on dibenzopyridino-18-crown-6. Anal. Lett. 1996, 29, 2269–2279. [Google Scholar] [CrossRef]
- Heins, E.A.; Baker, L.A.; Siwy, Z.S.; Mota, M.; Martin, C.R. Effect of crown ether on ion currents through synthetic membranes containing a single conically shaped nanopore. J. Phys. Chem. B 2005, 109, 18400–18407. [Google Scholar] [CrossRef]
- Powell, M.R.; Cleary, L.; Davenport, M.; Shea, K.J.; Siwy, Z.S. Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat. Nanotechnol. 2011, 6, 798–802. [Google Scholar] [CrossRef]
- Anderegg, G. Critical Survey of Stability Constants of EDTA Complexes. In Critical Survey of Stability Constants of EDTA Complexes; Pergamon; Elsevier Publication: Amsterdam, The Netherlands, 1977; pp. 1–36. [Google Scholar]
- Izatt, R.M.; Terry, R.E.; Haymore, B.L.; Hansen, L.D.; Dalley, N.K.; Avondet, A.G.; Christensen, J.J. Calorimetric titration study of the interaction of several uni- and bivalent cations with 15-crown-5, 18-crown-6, and two isomers of dicyclohexo-18-crown-6 in aqueous solution at 25.degree.C and.mu.=0.1. J. Am. Chem. Soc. 1976, 98, 7620–7626. [Google Scholar] [CrossRef]
Concentration (μM) | ric |
---|---|
0 | 19.6 |
2.5 | 10.8 |
5 | 4.9 |
10 | 1.9 |
15 | 1.2 |
25 | 0.67 |
Metal Cation | Percent Flow Rate Change |
---|---|
Pb2+ | 54.3 ± 0.4 |
K+ | 10 ± 4 |
Na+ | 9 ± 1 |
Sr2+ | 9 ± 2 |
Cu2+ | 8 ± 3 |
Ca2+ | 7 ± 3 |
Mg2+ | 6 ± 4 |
Zn2+ | 6 ± 1 |
Hg2+ | 5 ± 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bush, S.N.; Volta, T.T.; Martin, C.R. Chemical Sensing and Chemoresponsive Pumping with Conical-Pore Polymeric Membranes. Nanomaterials 2020, 10, 571. https://doi.org/10.3390/nano10030571
Bush SN, Volta TT, Martin CR. Chemical Sensing and Chemoresponsive Pumping with Conical-Pore Polymeric Membranes. Nanomaterials. 2020; 10(3):571. https://doi.org/10.3390/nano10030571
Chicago/Turabian StyleBush, Stevie N., Thomas T. Volta, and Charles R. Martin. 2020. "Chemical Sensing and Chemoresponsive Pumping with Conical-Pore Polymeric Membranes" Nanomaterials 10, no. 3: 571. https://doi.org/10.3390/nano10030571
APA StyleBush, S. N., Volta, T. T., & Martin, C. R. (2020). Chemical Sensing and Chemoresponsive Pumping with Conical-Pore Polymeric Membranes. Nanomaterials, 10(3), 571. https://doi.org/10.3390/nano10030571