Facile Synthesis of Cobalt-Doped Porous Composites with Amorphous Carbon/Zn Shell for High-Performance Microwave Absorption
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation
2.3. Electromagnetic Parameter Measurements
2.4. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.; Gao, X.; Lin, C.; Shi, L.; Li, X.; Wu, G. Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber. J. Alloys Compd. 2019, 785, 765–773. [Google Scholar] [CrossRef]
- Matzui, L.Y.; Trukhanov, A.V.; Yakovenko, O.S.; Vovchenko, L.L.; Zagorodnii, V.V.; Oliynyk, V.V.; Borovoy, M.O.; Trukhanova, E.L.; Astapovich, K.L.; Karpinsky, D.V.; et al. Functional Magnetic Composites Based on Hexaferrites: Correlation of the Composition, Magnetic and High-Frequency Properties. Nanomaterials 2019, 9, 1720. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Kim, J.; Kim, K.H. Microwave absorption properties of graphene oxide capsulated carbonyl iron particles. Appl. Surf. Sci. 2019, 475, 1065–1069. [Google Scholar] [CrossRef]
- Shu, R.; Wu, Y.; Li, Z.; Zhang, J.; Wan, Z.; Liu, Y.; Zheng, M. Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band. Compos. Sci. Technol. 2019, 184, 107839. [Google Scholar] [CrossRef]
- Nezhad, H.Y.; Thakur, V.K. Effect of morphological changes due to increasing carbon nanoparticles content on the quasi-static mechanical response of epoxy resin. Polymers 2018, 10, 1106. [Google Scholar] [CrossRef]
- Xu, H.L.; Yin, X.W.; Fan, X.M.; Tang, Z.M.; Hou, Z.X.; Li, M.H.; Li, X.L.; Zhang, L.T.; Cheng, L.F. Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance. Carbon 2019, 148, 421–429. [Google Scholar] [CrossRef]
- Zhao, H.B.; Cheng, J.B.; Wang, Y.Z. Biomass-derived Co@crystalline carbon@carbon aerogel composite with enhanced thermal stability and strong microwave absorption performance. J. Alloys Compd. 2018, 736, 71–79. [Google Scholar] [CrossRef]
- Saini, L.; Patra, M.K.; Dhaka, M.K.; Jani, R.K.; Gupta, G.K.; Dixit, A.; Vadera, S.R. Ni/graphitic carbon core-shell nanostructure-based light weight elastomeric composites for Ku-band microwave absorption applications. Crystengcomm 2018, 20, 4630–4640. [Google Scholar] [CrossRef]
- Wróblewska-Krepsztul, J.; Rydzkowski, T.; Michalska-Poźoga, I.; Thakur, V.K. Biopolymers for biomedical and pharmaceutical applications: Recent advances and overview of alginate electrospinning. Nanomaterials 2019, 9, 404. [Google Scholar] [CrossRef]
- Xu, H.; Yin, X.; Li, M.; Li, X.; Li, X.; Dang, X.; Zhang, L.; Cheng, L. Ultralight Cellular Foam from Cellulose Nanofiber/Carbon Nanotube Self-Assemblies for Ultrabroad-Band Microwave Absorption. ACS Appl. Mater. Interfaces 2019, 11, 22628–22636. [Google Scholar] [CrossRef]
- Gao, X.H.; Wu, X.Y.; Qiu, J. High Electromagnetic Waves Absorbing Performance of a Multilayer-Like Structure Absorber Containing Activated Carbon Hollow Porous Fibers-Carbon Nanotubes and Fe3O4 Nanoparticles. Adv. Electron. Mater. 2018, 4, 1700565. [Google Scholar] [CrossRef]
- Song, Z.M.; Liu, X.F.; Sun, X.; Li, Y.; Nie, X.Y.; Tang, W.K.; Yu, R.H.; Shui, J.L. Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic wave absorption performance. Carbon 2019, 151, 36–45. [Google Scholar] [CrossRef]
- Huang, L.; Li, J.J.; Wang, Z.J.; Li, Y.B.; He, X.D.; Yuan, Y. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 2019, 143, 507–516. [Google Scholar] [CrossRef]
- Siwal, S.S.; Zhang, Q.; Sun, C.; Thakur, V.K. Graphitic Carbon Nitride Doped Copper–Manganese Alloy as High–Performance Electrode Material in Supercapacitor for Energy Storage. Nanomaterials 2020, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Wang, J.; Luo, Q.; Sun, M.; Jiang, L.; Han, Q.; Liu, J.; Bi, H. Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem. Eng. J. 2019, 373, 122–130. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, G.; Liu, W.; Zhang, X.; Gao, Q.; Li, Y.; Du, Y. A novel Co/TiO2 nanocomposite derived from a metal–organic framework: Synthesis and efficient microwave absorption. J. Mater. Chem. C 2016, 4, 1860–1870. [Google Scholar] [CrossRef]
- Heng, L.Y.; Zhang, Z.L.; Chen, X.Q.; Wang, S.; Wu, Z.; Xie, Z.Y.; Tang, Z.X.; Zou, Y.H. Fe/nanoporous carbon hybrid derived from metal-organic framework for highly effective microwave absorption. Appl. Organomet. Chem. 2019, 33, e4991. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, J.; Jin, H.; Yan, T.; Yi, G.; Su, X.; Dai, W.; Wang, X. MOF-derived rambutan-like nanoporous carbon/nanotubes/Co composites with efficient microwave absorption property. Mater. Lett. 2019, 244, 138–141. [Google Scholar] [CrossRef]
- Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y. Formation of high crystalline ZIF-8 in an aqueous solution. Crystengcomm 2013, 15, 1794–1801. [Google Scholar] [CrossRef]
- Wu, Q.L.; Jin, H.H.; Chen, W.; Huo, S.Q.; Chen, X.; Su, X.G.; Wang, H.; Wang, J. Graphitized nitrogen-doped porous carbon composites derived from ZIF-8 as efficient microwave absorption materials. Mater. Res. Express 2018, 5, 065602. [Google Scholar] [CrossRef]
- Xu, J.; Liu, S.C.; Liu, Y. CO3O4/ZnO nanoheterostructure derived from core-shell ZIF-8@ZIF-67 for supercapacitors. Rsc. Adv. 2016, 6, 52137–52142. [Google Scholar] [CrossRef]
- Kikuchi, H.; Sumida, C. Incident Power Influence on Magnetoimpedance Element with Domain-Wall Resonance. IEEE Trans. Magn. 2018, 54, 4001605. [Google Scholar] [CrossRef]
- Park, S.H.; Sohn, Y.H.; Shin, S.U.; Hong, S.W.; Cho, G.H. An Accurate and Practical Core Loss Analysis for Compact High Step-Up Converters. IEEE Trans. Power Electr. 2019, 34, 8368–8376. [Google Scholar] [CrossRef]
- Abdalla, I.; Salim, A.; Zhu, M.; Yu, J.; Li, Z.; Ding, B. Light and Flexible Composite Nanofibrous Membranes for High-Efficiency Electromagnetic Absorption in a Broad Frequency. ACS Appl. Mater. Interfaces 2018, 10, 44561–44569. [Google Scholar] [CrossRef]
- Yin, P.; Zhang, L.; Wu, H.; Feng, X.; Wang, J.; Rao, H.; Wang, Y.; Dai, J.; Tang, Y. Two-Step Solvothermal Synthesis of (Zn0.5Co0.5Fe2O4/Mn0.5Ni0.5Fe2O4)@C-MWCNTs Hybrid with Enhanced Low Frequency Microwave Absorbing Performance. Nanomaterials 2019, 9, 1601. [Google Scholar] [CrossRef]
- Gao, X.; Wang, Y.; Wang, Q.; Wu, X.; Zhang, W.; Zong, M.; Zhang, L. Facile synthesis of a novel flower-like BiFeO3 microspheres/graphene with superior electromagnetic wave absorption performances. Ceram. Int. 2019, 45, 3325–3332. [Google Scholar] [CrossRef]
- Jian, S.L.; Hsiao, L.Y.; Yeh, M.H.; Ho, K.C. Designing a carbon nanotubes-interconnected ZIF-derived cobalt sulfide hybrid nanocage for supercapacitors. J. Mater. Chem. A 2019, 7, 1479–1490. [Google Scholar] [CrossRef]
- Chu, C.S.; Rao, S.; Ma, Z.F.; Han, H.L. Copper and cobalt nanoparticles doped nitrogen-containing carbon frameworks derived from CuO-encapsulated ZIF-67 as high-efficiency catalyst for hydrogenation of 4-nitrophenol. Appl. Catal. B Environ. 2019, 256, 117792. [Google Scholar] [CrossRef]
- Si, Y.; Lv, Z.; Lu, L.; Liu, M.; Wen, Y.; Chen, Y.; Jin, H.; Liu, J.; Song, W. Revealing important role of graphitic carbon nitride surface catalytic activity in photocatalytic hydrogen evolution by using different carbon co-catalysts. Appl. Surf. Sci. 2019, 491, 236–244. [Google Scholar] [CrossRef]
- Li, L.; Song, L.; Guo, H.; Xia, W.; Jiang, C.; Gao, B.; Wu, C.; Wang, T.; He, J. N-Doped porous carbon nanosheets decorated with graphitized carbon layer encapsulated Co9S8 nanoparticles: An efficient bifunctional electrocatalyst for the OER and ORR. Nanoscale 2019, 11, 901–907. [Google Scholar] [CrossRef]
- Mccreary, A.; An, Q.; Forster, A.M.; Liu, K.W.; He, S.Y.; Macosko, C.W.; Stein, A. Walker ARH. Raman imaging of surface and sub-surface graphene oxide in fiber reinforced polymer nanocomposites. Carbon 2019, 143, 793–801. [Google Scholar] [CrossRef]
- Shah, S.A.; Shen, X.; Xie, M.; Zhu, G.; Ji, Z.; Zhou, H.; Xu, K.; Yue, X.; Yuan, A.; Zhu, J.; et al. Nickel@Nitrogen-Doped Carbon@MoS2 Nanosheets: An Efficient Electrocatalyst for Hydrogen Evolution Reaction. Small 2019, 15, e1804545. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.; Choi, S.W.; Lee, K.B. Effect of carbonization temperature on the physical properties and CO2 adsorption behavior of petroleum coke-derived porous carbon. Fuel 2019, 248, 85–92. [Google Scholar] [CrossRef]
- Morita, R.; Gotoh, K.; Kubota, K.; Komaba, S.; Hashi, K.; Shimizu, T.; Ishida, H. Correlation of carbonization condition with metallic property of sodium clusters formed in hard carbon studied using Na-23 nuclear magnetic resonance. Carbon 2019, 145, 712–715. [Google Scholar] [CrossRef]
- Vecera, P.; Chacón-Torres, J.C.; Pichler, T.; Reich, S.; Soni, H.R.; Görling, A.; Edelthalhammer, K.; Peterlik, H.; Hauke, F.; Hirsch, A. The First Precise Determination of Graphene Functionalisation by in situ Raman Spectroscopy. arXiv 2017, arXiv:1703.02498. [Google Scholar]
- Jin, H.; Zhou, H.; Li, W. In situ derived Fe/N/S-codoped carbon nanotubes from ZIF-8 crystals as efficient electrocatalysts for the oxygen reduction reaction and zinc–air batteries. J. Mater. Chem. A 2018, 6, 20093–20099. [Google Scholar] [CrossRef]
- Gulino, A.; Dapporto, P.; Rossi, P.; Anastasi, G.; Fragalà, I. Viable route for the synthesis of the anhydrous Co (hfac)2 adduct with monoglyme: A useful precursor for thin films of CoO. J. Mater. Chem. 2004, 14, 2549–2553. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, X.; Zhou, S.; Li, X.; Li, L.; Yu, Z.; Gu, L. ZIF-8/ZIF-67-Derived Co-Nx-Embedded 1D Porous Carbon Nanofibers with Graphitic Carbon-Encased Co Nanoparticles as an Efficient Bifunctional Electrocatalyst. Small 2018, 14, e1800423. [Google Scholar] [CrossRef]
- Du, J.; Zhou, T.C.; Lian, L.X.; Liu, Y.; Du, Y.B. Two-step sintering of M-type strontium ferrite with high coercivity. Ceram. Int. 2019, 45, 6978–6984. [Google Scholar] [CrossRef]
- Huber, C.; Sepehri-Amin, H.; Goertler, M.; Groenefeld, M.; Teliban, I.; Hono, K.; Suess, D. Coercivity enhancement of selective laser sintered NdFeB magnets by grain boundary infiltration. Acta Mater. 2019, 172, 66–71. [Google Scholar] [CrossRef]
- Shi, X.; You, W.; Zhao, Y.; Li, X.; Shao, Z.; Che, R. Multi-scale magnetic coupling of Fe@SiO2@C-Ni yolk@triple-shell microspheres for broadband microwave absorption. Nanoscale 2019, 11, 17270–17276. [Google Scholar] [CrossRef]
- Huang, T.; Wu, Z.C.; Yu, Q.; Tan, D.G.; Li, L. Preparation of hierarchically porous carbon/magnetic particle composites with broad microwave absorption bandwidth. Chem. Eng. J. 2019, 359, 69–78. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Wang, T.; Su, X.; Yang, S.; Chen, W.; Wang, J.; Sun, J.; Peng, J. High-performance microwave absorption epoxy composites filled with hollow nickel nanoparticles modified graphene via chemical etching method. Compos. Sci. Technol. 2019, 176, 54–63. [Google Scholar] [CrossRef]
- Chen, H.; Hong, R.; Liu, Q.; Li, S.; Huang, F.; Lu, Y.; Wang, L.; Li, K.; Zhang, H. CNFs@carbonaceous Co/CoO composite derived from CNFs penetrated through ZIF-67 for high-efficient electromagnetic wave absorption material. J. Alloys Compd. 2018, 752, 115–122. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, Y.; Wang, M.; Liu, X.; Zong, M. Design and microwave absorption properties of thistle-like CoNi enveloped in dielectric Ag decorated graphene composites. J. Colloid Interface Sci. 2019, 534, 110–121. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Jin, H.; Zhang, B.; Huo, S.; Yang, S.; Su, X.; Wang, J. Facile Synthesis of Cobalt-Doped Porous Composites with Amorphous Carbon/Zn Shell for High-Performance Microwave Absorption. Nanomaterials 2020, 10, 330. https://doi.org/10.3390/nano10020330
Wu Q, Jin H, Zhang B, Huo S, Yang S, Su X, Wang J. Facile Synthesis of Cobalt-Doped Porous Composites with Amorphous Carbon/Zn Shell for High-Performance Microwave Absorption. Nanomaterials. 2020; 10(2):330. https://doi.org/10.3390/nano10020330
Chicago/Turabian StyleWu, Qilei, Huihui Jin, Bin Zhang, Siqi Huo, Shuang Yang, Xiaogang Su, and Jun Wang. 2020. "Facile Synthesis of Cobalt-Doped Porous Composites with Amorphous Carbon/Zn Shell for High-Performance Microwave Absorption" Nanomaterials 10, no. 2: 330. https://doi.org/10.3390/nano10020330
APA StyleWu, Q., Jin, H., Zhang, B., Huo, S., Yang, S., Su, X., & Wang, J. (2020). Facile Synthesis of Cobalt-Doped Porous Composites with Amorphous Carbon/Zn Shell for High-Performance Microwave Absorption. Nanomaterials, 10(2), 330. https://doi.org/10.3390/nano10020330