Creation of Gold Nanoparticles in ZnO by Ion Implantation–DFT and Experimental Studies
Abstract
:1. Introduction
2. Theoretical Procedures
3. Experimental Procedures
3.1. Ion Implantation
3.2. Samples Characterization
4. Results
4.1. The Theoretical DFT Modeling of Au Positions in the Wurtzite ZnO Structure
4.2. The Theoretical Simulations of the Au Interaction with ZnO and the He+ Ion-Channeling Effect in Various ZnO Planes
4.3. Experimental Results—Au:ZnO Structure Characterization by the RBS
4.4. Experimental Results—Au:ZnO Structure Characterization by the RBS/Channeling
4.5. Experimental Results—Au:ZnO Structure Characterization by TEM
4.6. Experimental Results—Au:ZnO Structure Characterization by Raman Spectroscopy
4.7. Experimental Results—Au:ZnO Optical Characterization by Photoluminescence spectroscopy
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in chemo-, immuno-, and combined therapy: Review. Biomed. Opt. Express 2019, 10, 3152. [Google Scholar] [CrossRef] [PubMed]
- Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Gold Nanoparticles in Cancer Treatment. Mol. Pharm. 2019, 16, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Daruich De Souza, C.; Ribeiro Nogueira, B.; Rostelato, M.E.C.M. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J. Alloy. Compd. 2019, 798, 714–740. [Google Scholar] [CrossRef]
- Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Gold Nanomaterials at Work in Biomedicine. Chem. Rev. 2015, 115, 10410–10488. [Google Scholar] [CrossRef]
- Adams, M. Modern Nanoparticles Technology; NY Research Press: New York, NY, USA, 2015; ISBN 978-1-63238-332-7. [Google Scholar]
- Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G.V.; Li, X.; Marquez, M.; Xia, Y. Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 2006, 35, 1084. [Google Scholar] [CrossRef]
- Narayanan, R.; El-Sayed, M.A. Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Nanoparticle Shape Dependence and Stability. J. Phys. Chem. B 2005, 109, 12663–12676. [Google Scholar] [CrossRef]
- Kumar, G.; Tibbitts, L.; Newell, J.; Panthi, B.; Mukhopadhyay, A.; Rioux, R.M.; Pursell, C.J.; Janik, M.; Chandler, B.D. Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies. Nat. Chem. 2018, 10, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Li, S.; Huang, Y.; Wu, S.; Zhou, X.; Li, S.; Gan, C.L.; Boey, F.; Mirkin, C.A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292. [Google Scholar] [CrossRef]
- Jany, B.R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K.H.W.; Janas, A.; Szajna, K.; Verbeeck, J.; Van Aert, S.; Van Tendeloo, G.; et al. Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface. Sci. Rep. 2017, 7, 42420. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A.F.; Goldthorpe, I.A.; Adhikari, H.; Koto, M.; Wang, Y.-C.; Fu, L.; Olsson, E.; McIntyre, P.C. Hexagonal Close-Packed Structure of Au Nanocatalysts Solidified after Ge Nanowire Vapor−Liquid−Solid Growth. Nano Lett. 2010, 10, 3302–3306. [Google Scholar] [CrossRef]
- Marshall, A.F.; Thombare, S.V.; McIntyre, P.C. Crystallization Pathway for Metastable Hexagonal Close-Packed Gold in Germanium Nanowire Catalysts. Cryst. Growth Des. 2015, 15, 3734–3739. [Google Scholar] [CrossRef]
- Hartland, G.V. Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev. 2011, 111, 3858–3887. [Google Scholar] [CrossRef]
- Chen, F.; Amekura, H.; Jia, Y. Overview of Ion Beam Produced Dielectric Waveguides. In Ion Irradiation of Dielectrics for Photonic Applications; Springer Series in Optical Sciences; Springer: Singapore, 2020; Volume 231, pp. 21–43. ISBN 9789811546068. [Google Scholar]
- Lorenz, K.; Peres, M.; Franco, N.; Marques, J.G.; Miranda, S.M.C.; Magalhães, S.; Monteiro, T.; Wesch, W.; Alves, E.; Wendler, E. Radiation damage formation and annealing in GaN and ZnO. In Proceedings of the SPIE OPTO, San Francisco, CA, USA, 14 March 2011; Teherani, F.H., Look, D.C., Rogers, D.J., Eds.; p. 79400O. [Google Scholar]
- Insulating Materials for Optoelectronics: New Developments; Agulló-López, F. (Ed.) World Scientific: Singapore; River Edge, NJ, USA, 1995; ISBN 978-981-02-2230-7. [Google Scholar]
- Kucheyev, S.O.; Jagadish, C. Ion Implantation into ZnO. In Zinc Oxide Bulk, Thin Films and Nanostructures; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA, 2006; pp. 285–312. ISBN 978-0-08-044722-3. [Google Scholar]
- Stepanov, A.L.; Khaibullin, R.I.; Can, N.; Ganeev, R.A.; Ryasnyansky, A.I.; Buchal, C.; Uysal, S. Application of ion implantation for synthesis of copper nanoparticles in a zinc oxide matrix for obtaining new nonlinear optical materials. Tech. Phys. Lett. 2004, 30, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, W.; Ghanbaja, J.; Battie, Y.; Naciri, A.E.; Soldera, F.; Mücklich, F.; Horwat, D. Local Structure-Driven Localized Surface Plasmon Absorption and Enhanced Photoluminescence in ZnO-Au Thin Films. J. Phys. Chem. C 2016, 120, 29405–29413. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Silva, P.; Borges, J.; Rodrigues, M.S.; Oliveira, J.C.; Alves, E.; Barradas, N.P.; Dias, J.P.; Cavaleiro, A.; Vaz, F. Nanocomposite Au-ZnO thin films: Influence of gold concentration and thermal annealing on the microstructure and plasmonic response. Surf. Coat. Technol. 2020, 385, 125379. [Google Scholar] [CrossRef]
- Phala, N.S.; Klatt, G.; van Steen, E.; French, S.A.; Sokol, A.A.; Catlow, C.R.A. The nature of the oxidation states of gold on ZnO. Phys. Chem. Chem. Phys. 2005, 7, 2440. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Y.; Li, J. Support effects on the dissociation of hydrogen over gold clusters on ZnO(101) surface: Theoretical insights. J. Chem. Phys. 2012, 137, 234704. [Google Scholar] [CrossRef]
- Méndez-Reyes, J.M.; Monroy, B.M.; Bizarro, M.; Güell, F.; Martínez, A.; Ramos, E. Gold as an intruder in ZnO nanowires. Phys. Chem. Chem. Phys. 2015, 17, 21525–21532. [Google Scholar] [CrossRef]
- Liu, M.-H.; Chen, Y.-W.; Liu, X.; Kuo, J.-L.; Chu, M.-W.; Mou, C.-Y. Defect-Mediated Gold Substitution Doping in ZnO Mesocrystals and Catalysis in CO Oxidation. ACS Catal. 2016, 6, 115–122. [Google Scholar] [CrossRef]
- Liu, M.-H.; Chen, Y.-W.; Lin, T.-S.; Mou, C.-Y. Defective Mesocrystal ZnO-Supported Gold Catalysts: Facilitating CO Oxidation via Vacancy Defects in ZnO. ACS Catal. 2018, 8, 6862–6869. [Google Scholar] [CrossRef]
- Li, G.; Ahmoum, H.; Liu, S.; Liu, S.; Su’ait, M.S.; Boughrara, M.; Kerouad, M.; Wang, Q. Theoretical insight into magnetic and thermoelectric properties of Au doped ZnO compounds using density functional theory. Phys. B Condens. Matter 2019, 562, 67–74. [Google Scholar] [CrossRef]
- Goyenola, C.; Stafström, S.; Hultman, L.; Gueorguiev, G.K. Structural Patterns Arising during Synthetic Growth of Fullerene-Like Sulfocarbide. J. Phys. Chem. C 2012, 116, 21124–21131. [Google Scholar] [CrossRef]
- Gueorguiev, G.K.; Czigány, Z.S.; Furlan, A.; Stafström, S.; Hultman, L. Intercalation of P atoms in Fullerene-like CPx. Chem. Phys. Lett. 2011, 501, 400–403. [Google Scholar] [CrossRef] [Green Version]
- Macková, A.; Malinskỳ, P.; Jagerová, A.; Mikšová, R.; Nekvindová, P.; Cajzl, J.; Böttger, R.; Akhmadaliev, S. Au incorporation into various ZnO crystallographic cuts realised by ion implantation–ZnO damage characterization. Vacuum 2019, 169, 108892. [Google Scholar] [CrossRef]
- Jagerová, A.; Malinský, P.; Mikšová, R.; Nekvindová, P.; Cajzl, J.; Ryšánek, P.; Macková, A. High energy Au+ ion implantation of polar and nonpolar ZnO—Structure modification and optical properties. Surf. Interface Anal. 2020, 52, 1083–1088. [Google Scholar] [CrossRef]
- Jagerová, A.; Malinskỳ, P.; Cutroneo, M.; Nekvindová, P.; Cajzl, J.; Michalcová, A.; Macková, A. Non-polar ZnO facet implanted with Au ions and subsequently modified using energetic O ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 462, 16–23. [Google Scholar] [CrossRef]
- Smulders, P.J.M.; Boerma, D.O. Computer simulation of channeling in single crystals. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1987, 29, 471–489. [Google Scholar] [CrossRef]
- Nekvindová, P.; Cajzl, J.; Macková, A.; Malinský, P.; Oswald, J.; Böttger, R.; Yatskiv, R. Er implantation into various cuts of ZnO—Experimental study and DFT modelling. J. Alloy. Compd. 2020, 816, 152455. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Krist. Cryst. Mater. 2005, 220. [Google Scholar] [CrossRef] [Green Version]
- Sowa, H.; Ahsbahs, H. High-pressure X-ray investigation of zincite ZnO single crystals using diamond anvils with an improved shape. J. Appl. Crystallogr. 2006, 39, 169–175. [Google Scholar] [CrossRef]
- Perdew, J.P. Unified Theory of Exchange and Correlation Beyond the Local Density Approximation In Electronic Structure of Solids. Electron. Struct. Solids 1991, 91, 11–20. [Google Scholar]
- Nastasi, M.A.; Mayer, J.W.; Wang, Y. Ion Beam Analysis: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-1-4398-4638-4. [Google Scholar]
- Jagerová, A.; Malinskỳ, P.; Mikšová, R.; Nekvindová, P.; Cajzl, J.; Akhmadaliev, S.; Holỳ, V.; Macková, A. Distinct defect appearance in Gd implanted polar and nonpolar ZnO surfaces in connection to ion channeling effect. J. Vac. Sci. Technol. A Vac. Surf. Film 2019, 37, 061406. [Google Scholar] [CrossRef]
- Azarov, A.Y.; Hallén, A.; Du, X.L.; Rauwel, P.; Kuznetsov, A.Y.; Svensson, B.G. Effect of implanted species on thermal evolution of ion-induced defects in ZnO. J. Appl. Phys. 2014, 115, 073512. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, J.E.; Snyder, J.A.; Lin, Z.; Hess, A.C. LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO. Phys. Rev. B 2000, 62, 1660–1665. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Azarov, A.Y.; Wendler, E.; Kuznetsov, A.Y.; Svensson, B.G. Crucial role of implanted atoms on dynamic defect annealing in ZnO. Appl. Phys. Lett. 2014, 104, 052101. [Google Scholar] [CrossRef]
- Mackova, A.; Jagerová, A.; Malinsky, P.; Cutroneo, M.; Flaks, J.; Nekvindova, P.; Michalcova, A.; Holý, V.; Košutová, T. Nanostructures in various Au ion-implanted ZnO facets modified using energetic O ions. Phys. Chem. Chem. Phys. 2020, 22, 23563–23573. [Google Scholar] [CrossRef]
- Nordlund, K.; Djurabekova, F.; Hobler, G. Large fraction of crystal directions leads to ion channeling. Phys. Rev. B 2016, 94, 214109. [Google Scholar] [CrossRef] [Green Version]
- Macková, A.; Malinský, P.; Jagerová, A.; Mikšová, R.; Nekvindová, P.; Cajzl, J.; Rinkevičiūtė, E.; Akhmadaliev, S. Damage formation and Er structural incorporation in m-plane and a-plane ZnO. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2019, 460, 38–46. [Google Scholar] [CrossRef]
- Schumm, M. ZnO-based Semiconductors Studied by Raman Spectroscopy: Semimagnetic Alloying, Doping, and Nanostructures; Julius–Maximilians–Universität Würzburg: Würzburg, Germany, 2008. [Google Scholar]
- Kennedy, J.; Sundrakannan, B.; Katiyar, R.S.; Markwitz, A.; Li, Z.; Gao, W. Raman scattering investigation of hydrogen and nitrogen ion implanted ZnO thin films. Curr. Appl. Phys. 2008, 8, 291–294. [Google Scholar] [CrossRef]
- Alim, K.A.; Fonoberov, V.A.; Shamsa, M.; Balandin, A.A. Micro-Raman investigation of optical phonons in ZnO nanocrystals. J. Appl. Phys. 2005, 97, 124313. [Google Scholar] [CrossRef] [Green Version]
- Ratajczak, R.; Guziewicz, E.; Prucnal, S.; Łuka, G.; Böttger, R.; Heller, R.; Mieszczynski, C.; Wozniak, W.; Turos, A. Luminescence in the Visible Region from Annealed Thin ALD-ZnO Films Implanted with Different Rare Earth Ions. Phys. Status Solidi (A) 2018, 215, 1700889. [Google Scholar] [CrossRef]
- Alvi, N.H.; ul Hasan, K.; Nur, O.; Willander, M. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res. Lett 2011, 6, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.H.; Tian, J.S.; Chen, C.Y.; Huang, H.H.; Yeh, Y.C.; Deng, P.Y.; Chang, L.; Chu, Y.H.; Wu, Y.R.; He, J.H. The Effect of Tensile Strain on Optical Anisotropy and Exciton of m-Plane ZnO. IEEE Photonics J. 2015, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ahn, C.H.; Kim, Y.Y.; Kim, D.C.; Mohanta, S.K.; Cho, H.K. A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 2009, 105, 013502. [Google Scholar] [CrossRef]
- Azarov, A.; Galeckas, A.; Hallén, A.; Kuznetsov, A.; Monakhov, E.; Svensson, B.G. Optical activity and defect/dopant evolution in ZnO implanted with Er. J. Appl. Phys. 2015, 118, 125703. [Google Scholar] [CrossRef]
- Rumble, J.R.; Lide, D.R.; Bruno, T.J. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 99th ed.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-138-56163-2. [Google Scholar]
- Alkahtani, E.A.; Merad, A.E.; Boufatah, M.R.; Benosman, A. DFT investigation of structural, electronic and optical properties of pure and Er-doped ZnO: Modified Becke-Johnson exchange potential. Optik 2017, 128, 274–280. [Google Scholar] [CrossRef]
- Jalilian, J.; Fakhri, S.; Zolfaghari, A. Comment on “DFT investigation of structural, electronic and optical properties of pure and Er-doped ZnO: Modified Becke-Johnson exchange potential”. Optik 2018, 156, 99–103. [Google Scholar] [CrossRef]
- Khan, T.; Ullah, N.; Khan, M.A.; Mashwani, Z.-R.; Nadhman, A. Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv. Colloid Interface Sci. 2019, 272, 102017. [Google Scholar] [CrossRef]
- Zhang, X.D.; Wu, P.; Shen, Y.Y.; Zhang, L.H.; Xue, Y.H.; Zhu, F.; Zhang, D.C.; Liu, C.L. Structural and optical properties of Au-implanted ZnO films. Appl. Surface Sci. 2011, 258, 151–157. [Google Scholar] [CrossRef]
- Popok, V.N. High-Fluence Ion Implantation of Polymers: Evolution of Structure and Composition. In Radiation Effects in Polymeric Materials; Kumar, V., Chaudhary, B., Sharma, V., Verma, K., Eds.; Springer Series on Polymer and Composite Materials; Springer International Publishing: Cham, Switzerland, 2019; pp. 69–111. ISBN 978-3-030-05769-5. [Google Scholar]
- Chakraborty, I.; Carvalho, D.; Shirodkar, S.N.; Lahiri, S.; Bhattacharyya, S.; Banerjee, R.; Waghmare, U.; Ayyub, P. Novel hexagonal polytypes of silver: Growth, characterization and first-principles calculations. J. Phys. Condens. Matter 2011, 23, 325401. [Google Scholar] [CrossRef] [PubMed]
Unit Cell | Atom | Positions in Fractional Coordinates (x, y, z) for Hexagonal-Cell Representation * |
---|---|---|
Single-cell | Zn | (0.33333333, 0.66666667, 0.00000000) |
O | (0.33333333, 0.66666667, 0.38230000) | |
Supercell 2 × 2 × 2 | Au in Zn position | (0.33333333, 0.66666667, 0.75000000) |
Au in octahedral void | (0.50000000, 0.50000000, 0.56550000) | |
Au in tetrahedral void | (0.33333333, 0.66666667, 0.61926400) | |
Au in O position | (0.33333333, 0.66666667, 0.44050000) |
Without Geometry Optimization | With Geometry Optimization | |||
---|---|---|---|---|
Structure | Calculated Cohesive Energy (eV/atom) * | Au Defect Formation Energy (eV) | Calculated Cohesive Energy (eV/atom) * | Au Defect Formation Energy (eV) |
ZnO (exp.) [40] | 3.76 | - | 3.76 | - |
ZnO (calc.) | 3.53 ** | - | 3.53 ** | - |
Au-Zn: ZnO | 3.26 | +7.0 | 3.33 | +4.9 |
Au-OctVoid: ZnO | 3.17 | +11.2 | 3.33 | +5.9 |
Au-TetrVoid: ZnO | 2.52 | +32.5 | 3.33 | +5.9 |
Au-O: ZnO | 2.97 | +15.3 | 3.24 | +6.4 |
Ion Energy/Fluence MeV/(ions/cm2) | χD - c-plane (0001) | χD - a-plane (11–20) | χD - m-plane (10–10) | |||
---|---|---|---|---|---|---|
Implanted | Annealed | Implanted | Annealed | Implanted | Annealed | |
(%) | (%) | (%) | (%) | (%) | (%) | |
Pristine | 3 ± 0.5 | – | 3 ± 0.5 | – | 4 ± 0.5 | – |
Au 0.4 MeV/5 × 1014 | 16 ± 0.3 | 15 ± 0.3 | 13 ± 0.3 | 11 ± 0.2 | 22 ± 0.4 | 22 ± 0.4 |
Au 5 MeV/5 × 1014 | 9 ± 0.5 | 7 ± 0.5 | 5 ± 0.5 | 4 ± 0.5 | 15 ± 1 | 10 ± 1 |
Au 0.4 MeV/1 × 1015 | 32 ± 0.6 | 27 ± 0.5 | 21 ± 0.4 | 19 ± 0.4 | 36 ± 0.7 | 30 ± 0.6 |
Au 5 MeV/1 × 1015 | 10 ± 1 | 8 ± 0.5 | 5 ± 0.5 | 4 ± 0.5 | 17 ± 1 | 16 ± 1 |
Au 1 MeV/1.5 × 1016 | 72 ± 4.0 | 55 ± 2.0 | 51 ± 2.0 | 45 ± 2.0 | 65 ± 2.0 | 62 ± 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cajzl, J.; Jeníčková, K.; Nekvindová, P.; Michalcová, A.; Veselý, M.; Macková, A.; Malinský, P.; Jágerová, A.; Mikšová, R.; Akhmadaliev, S. Creation of Gold Nanoparticles in ZnO by Ion Implantation–DFT and Experimental Studies. Nanomaterials 2020, 10, 2392. https://doi.org/10.3390/nano10122392
Cajzl J, Jeníčková K, Nekvindová P, Michalcová A, Veselý M, Macková A, Malinský P, Jágerová A, Mikšová R, Akhmadaliev S. Creation of Gold Nanoparticles in ZnO by Ion Implantation–DFT and Experimental Studies. Nanomaterials. 2020; 10(12):2392. https://doi.org/10.3390/nano10122392
Chicago/Turabian StyleCajzl, Jakub, Karla Jeníčková, Pavla Nekvindová, Alena Michalcová, Martin Veselý, Anna Macková, Petr Malinský, Adéla Jágerová, Romana Mikšová, and Shavkat Akhmadaliev. 2020. "Creation of Gold Nanoparticles in ZnO by Ion Implantation–DFT and Experimental Studies" Nanomaterials 10, no. 12: 2392. https://doi.org/10.3390/nano10122392
APA StyleCajzl, J., Jeníčková, K., Nekvindová, P., Michalcová, A., Veselý, M., Macková, A., Malinský, P., Jágerová, A., Mikšová, R., & Akhmadaliev, S. (2020). Creation of Gold Nanoparticles in ZnO by Ion Implantation–DFT and Experimental Studies. Nanomaterials, 10(12), 2392. https://doi.org/10.3390/nano10122392