Design and Simulation of Low-Threshold Miniaturized Single-Mode Nanowire Lasers Combined with a Photonic Crystal Microcavity and Asymmetric Distributed-Bragg-Reflector Mirrors
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, Y.H.; Jewell, J.L. Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes. Electron. Lett. 1989, 25, 1377–1378. [Google Scholar] [CrossRef] [Green Version]
- Zapien, J.A.; Jiang, Y.; Meng, X.M.; Chen, W.; Au, F.C.K.; Lifshitz, Y.; Lee, S.T. Room-temperature single nanoribbon lasers. Appl. Phys. Lett. 2004, 84, 1189–1191. [Google Scholar] [CrossRef]
- Gayral, B.; Gerard, J.M.; Lemaitre, A.; Dupuis, C.; Manin, L.; Pelouard, J.L. High-Q wet-etched GaAs microdisks containing InAs quantum boxes. Appl. Phys. Lett. 1999, 75, 1908–1910. [Google Scholar] [CrossRef]
- Wiersig, J.; Hentschel, M. Combining directional light output and ultralow loss in deformed microdisks. Phys. Rev. Lett. 2008, 100, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Ling, B.; Sun, X.W.; Sun, H.D. Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks. Adv. Mater. 2011, 23, 2199. [Google Scholar] [CrossRef] [PubMed]
- Tamboli, A.C.; Haberer, E.D.; Sharma, R.; Lee, K.H.; Nakamura, S.; Hu, E.L. Room-temperature continuous-wave lasing in GaN/InGaN microdisks. Nat. Photonics 2007, 1, 61–64. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Xu, J.J.; Peng, A.D.; Fu, H.B.; Ma, Y.; Jiang, L.; Yao, J.N. Optical waveguide based on crystalline organic microtubes and microrods. Angew. Chem. Int. Ed. 2008, 47, 7301–7305. [Google Scholar] [CrossRef]
- Maruo, S.; Kawata, S. Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication. J. Microelectromech. Syst. 1998, 7, 411–415. [Google Scholar] [CrossRef]
- Sun, X.W.; Yu, S.F.; Xu, C.X.; Yuen, C.; Chen, B.J.; Li, S. Room-temperature ultraviolet lasing from zinc oxide microtubes. Jpn. J. Appl. Phys. 2003, 42, L1229–L1231. [Google Scholar] [CrossRef]
- Mendach, S.; Songmuang, R.; Kiravittaya, S.; Rastelli, A.; Benyoucef, M.; Schmidt, O.G. Light emission and wave guiding of quantum dots in a tube. Appl. Phys. Lett. 2006, 88, 111120. [Google Scholar] [CrossRef]
- Ho, X.; Tatebayashi, J.; Sergent, S.; Fong, C.F.; Iwamoto, S.; Arakawa, Y. Low-threshold near-infrared GaAs-AlGaAs core-shell nanowire plasmon laser. ACS Photonics 2015, 2, 165–171. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, G.Y.; Liu, X.F.; Qian, F.; Li, Y.; Sum, T.C.; Lieber, C.M.; Xiong, Q. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 2014, 5, 4953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, X.; Huang, Y.; Agarwal, R.; Lieber, C.M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241–245. [Google Scholar] [CrossRef]
- Huang, M.H.; Mao, S.; Feick, H.; Yan, H.Q.; Wu, Y.Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P.D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, A.H.; Vaddiraju, S.; Maslov, A.V.; Ning, C.Z.; Sunkara, M.K.; Meyyappan, M.J. Near-infrared semiconductor subwavelength-wire lasers. Appl. Phys. Lett. 2006, 88, 241. [Google Scholar] [CrossRef] [Green Version]
- Colombo, C.; Hei, M.; Grätzel, M.; Morral, A.F. Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 2009, 94, 173108. [Google Scholar] [CrossRef]
- Song, E.; Choi, J.W. Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 2013, 3, 498–523. [Google Scholar] [CrossRef]
- Zheng, J.; Yan, X.; Wei, W.; Wu, C.; Sibirev, N.; Zhang, X.; Ren, X.M. A low-threshold miniaturized plasmonic nanowire laser with high-reflectivity metal mirrors. Nanomaterials 2020, 10, 1928. [Google Scholar] [CrossRef]
- Giubileo, F.; Di Bartolomeo, A.; Iemmo, L.; Luongo, G.; Passacantando, M.; Koivusalo, E.; Hakkarainen, T.V.; Guina, M. Field emission from self-catalyzed GaAs nanowires. Nanomaterials 2017, 7, 275. [Google Scholar] [CrossRef]
- Lu, Y.J.; Kim, J.; Chen, H.Y.; Wu, C.H.; Dabidian, N.; Sanders, C.E.; Wang, C.Y.; Lu, M.Y.; Li, B.H.; Qiu, X.G.; et al. Plasmonic nanolaser using epitaxially grown silver film. Science 2012, 337, 450–453. [Google Scholar] [CrossRef]
- Oulton, R.F.; Sorger, V.J.; Zentgraf, T.; Ma, R.M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X.J. Plasmon lasers at deep subwavelength scale. Nature 2009, 461, 629–632. [Google Scholar] [CrossRef] [Green Version]
- Scofield, A.C.; Kim, S.H.; Shapiro, J.N.; Lin, A.; Liang, B.L.; Scherer, A.; Huffaker, D.L. Bottom-up photonic crystal lasers. Nano Lett. 2011, 11, 5387–5390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Painter, O.; Lee, R.K.; Scherer, A.; Yariv, A.; O’Brien, J.D.; Dapkus, P.D.; Kim, I. Two-dimensional photonic band-gap defect mode laser. Science 1999, 284, 1819–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ki, H.; Le, W.J.; Farrel, A.C.; Morales, J.S.; Senanayake, P.; Prikhodko, S.V.; Ochalski, T.J.; Huffaker, D.L. Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature. Nano Lett. 2017, 17, 3465–3470. [Google Scholar]
- Yokoo, A.; Takiguchi, M.; Birowosuto, M.D.; Tateno, K.; Zhang, G.Q.; Kuramochi, E.; Shinya, A.; Taniyama, H.; Notomi, M. Subwavelength nanowire lasers on a silicon photonic crystal operating at telecom wavelengths. ACS Photonics 2017, 4, 355–362. [Google Scholar] [CrossRef]
- Kim, H.; Lee, W.J.; Farrell, A.C.; Balgarkashi, A.; Huffaker, D.L. Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator. Nano Lett. 2017, 17, 5244–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrelet, C.J.; Bao, J.M.; Loncar, M.; Park, H.G.; Capasso, F.; Lieber, C.M. Hybrid single-nanowire photonic crystal and microresonator structures. Nano Lett. 2006, 6, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Loncar, M. Ultra-high quality factor optical resonators based on semiconductor nanowires. Opt. Express 2008, 16, 17400–17409. [Google Scholar] [CrossRef]
- Heo, J.; Guo, W.; Bhattacharya, P. Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon. Appl. Phys. Lett. 2011, 98, 1826. [Google Scholar] [CrossRef] [Green Version]
- Sergent, S.; Takiguchi, M.; Tsuchizawa, T.; Yokoo, A.; Taniyama, H.; Kuramochi, E.; Notomi, M. Nanomanipulating and tuning ultraviolet ZnO-nanowire-induced photonic crystal nanocavities. ACS Photonics 2017, 4, 1040–1047. [Google Scholar] [CrossRef]
- Adachi, S. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y. J. Appl. Phys. 1989, 10, 10. [Google Scholar] [CrossRef]
- Xu, T.; Zhu, N.; Xu, M.Y.C.; Wosinski, L.; Aitchison, J.S.; Ruda, H.E. Pillar-array based optical sensor. Opt. Express 2010, 18, 5420–5425. [Google Scholar] [CrossRef] [PubMed]
- Joannopoulos, J.D.; Villeneuve, P.R.; Fan, S.H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149. [Google Scholar] [CrossRef]
- Saxena, D.; Mokkapati, S.; Parkinson, P.; Jiang, N.; Gao, Q.; Tan, H.H.; Jagadish, C. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photonics 2013, 7, 963–968. [Google Scholar] [CrossRef]
- Bergman, D.J.; Stockman, M.I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 2003, 90, 027402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altug, H.; Vuckovic, J. Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays. Appl. Phys. Lett. 2005, 86, 111102. [Google Scholar] [CrossRef] [Green Version]
- Moreolo, M.S.; Morra, V.; Cincotti, G. Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides. J. Opt. A-Pure Appl. Opt. 2008, 10, 064002. [Google Scholar] [CrossRef]
- Zhang, C.B.; Xu, J.Y.; Chen, Y. Preparation of monolayer photonic crystals from Ag nanobulge-deposited SiO2 particles as substrates for reproducible SERS assay of trace thiol pesticide. Nanomaterials 2020, 10, 1205. [Google Scholar] [CrossRef]
- Wu, C.; Liu, X.; Feng, S.; Chen, X.; Li, C.; Wang, Y. High-sensitivity silicon-based photonic crystal refractive index biosensor based on defect-mode coupling. Opt. Commun. 2018, 427, 409–417. [Google Scholar] [CrossRef]
- Zimmler, M.A.; Capasso, F.; Muller, S.; Ronning, C. Optically pumped nanowire lasers: Invited review. Semicond. Sci. Technol. 2010, 25, 024001. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.T.; Preston, K.; Painter, O.; Lipson, M. First-principle derivation of gain in high-index-contrast waveguides. Opt. Express 2008, 16, 16659–16669. [Google Scholar] [CrossRef] [PubMed]
- Li, D.B.; Ning, C.Z. Peculiar features of confinement factors in a metal-semiconductor waveguide. Appl. Phys. Lett. 2010, 96, 18. [Google Scholar] [CrossRef]
- Xu, P.; Liu, S.; Tang, M.; Xu, X.; Lin, X.; Wu, Z.; Zhuge, M.; Ren, Z.; Wang, Z. Highly polarized single mode nanobelt laser. Appl. Phys. Lett. 2017, 110, 201112. [Google Scholar] [CrossRef]
- Zimmler, M.A.; Bao, J.; Capasso, F.; Mueller, S.; Ronning, C. Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation. Appl. Phys. Lett. 2008, 93, 5. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Wei, W.; Yuan, X.; Zhang, Y.; Yan, X.; Zhang, X. Design and Simulation of Low-Threshold Miniaturized Single-Mode Nanowire Lasers Combined with a Photonic Crystal Microcavity and Asymmetric Distributed-Bragg-Reflector Mirrors. Nanomaterials 2020, 10, 2344. https://doi.org/10.3390/nano10122344
Wu C, Wei W, Yuan X, Zhang Y, Yan X, Zhang X. Design and Simulation of Low-Threshold Miniaturized Single-Mode Nanowire Lasers Combined with a Photonic Crystal Microcavity and Asymmetric Distributed-Bragg-Reflector Mirrors. Nanomaterials. 2020; 10(12):2344. https://doi.org/10.3390/nano10122344
Chicago/Turabian StyleWu, Chao, Wei Wei, Xueguang Yuan, Yangan Zhang, Xin Yan, and Xia Zhang. 2020. "Design and Simulation of Low-Threshold Miniaturized Single-Mode Nanowire Lasers Combined with a Photonic Crystal Microcavity and Asymmetric Distributed-Bragg-Reflector Mirrors" Nanomaterials 10, no. 12: 2344. https://doi.org/10.3390/nano10122344
APA StyleWu, C., Wei, W., Yuan, X., Zhang, Y., Yan, X., & Zhang, X. (2020). Design and Simulation of Low-Threshold Miniaturized Single-Mode Nanowire Lasers Combined with a Photonic Crystal Microcavity and Asymmetric Distributed-Bragg-Reflector Mirrors. Nanomaterials, 10(12), 2344. https://doi.org/10.3390/nano10122344