Recent Progress on the Gold-Free Integration of Ternary III–As Antimonide Nanowires Directly on Silicon
Abstract
:1. Introduction
1.1. Ternary III–As–Sb Nanowires
1.2. Au-Free Nanowires Growth Strategies
1.2.1. Self-Catalyzed Growth
1.2.2. Selective Area Growth
1.3. Nanowire Growth Techniques
2. Growth of Au-Free Ternary III–As–Sb Nanowires Directly on Silicon
2.1. InAsSb Nanowires Growth Directly on Silicon
2.2. GaAsSb Nanowires Growth Directly on Silicon
3. Surfactant Effect of Sb
3.1. Influence of Sb Surfactant on MBE Grown III–As–Sb Nanowires
3.1.1. Influence of Sb Surfactant on Nanowire Morphology
3.1.2. Influence of Sb Surfactant on Nanowires Crystal Structure
3.2. Influence of Sb Surfactant on MOCVD Grown III–As–Sb Nanowires
3.3. Strategies for the Suppression of Sb Surfactant Effect
4. Applications of Au-Free III–As–Sb Nanowires
4.1. Optical Properties of Au-Free Ternary III–As–Sb Nanowires
4.2. Device Applications of Au-Free Ternary III–V–Sb Nanowires
5. Conclusions
Funding
Conflicts of Interest
References
- Yen, M.Y.; People, R.; Wecht, K.W.; Cho, A.Y. Long-wavelength photoluminescence of InAs1−xSbx grown by molecular beam epitaxy on (100) InAs. Appl. Phys. Lett. 1988, 52, 489. [Google Scholar] [CrossRef]
- Claes, T.; Philippe, C.; Sébastien, P.; Kimberly, A.D. Electrical properties of InAs1−xSbx and InSb nanowires grown by molecular beam epitaxy. Appl. Phys. Lett. 2012, 100, 232105. [Google Scholar]
- Rogalski, A. Infrared detectors: An overview. Infrared Phys. Technol. 2002, 43, 187–210. [Google Scholar] [CrossRef] [Green Version]
- Pea, M.; Ercolani, D.; Li, A.; Gemmi, M.; Rossi, F.; Beltram, F.; Sorba, L. Suppression of lateral growth in InAs/InAsSb heterostructured nanowires. J. Cryst. Growth 2013, 366, 8–14. [Google Scholar] [CrossRef]
- Rogalski, A. Infrared detectors: Status and trends. Prog. Quantum. Electron. 2003, 27, 59–210. [Google Scholar] [CrossRef]
- Olson, B.V.; Shaner, E.A.; Kim, J.K.; Klem, J.F.; Hawkins, S.D.; Murray, L.M.; Prineas, J.P.; Flatté, M.E.; Boggess, T.F. Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice. Appl. Phys. Lett. 2012, 101, 92109. [Google Scholar] [CrossRef]
- Shao, H.L.W.; Torfi, A.; Moscicka, D.; Wang, W.I. Room-temperature InAsSb photovoltaic detectors for mid-infrared applications. IEEE Photonic Tech. L. 2006, 18, 1756–1758. [Google Scholar] [CrossRef]
- Li, Z.Y.; Yuan, X.M.; Fu, L.; Peng, K.; Wang, F.; Fu, X.; Caroff, P.; White, T.P.; Tan, H.H.; Jagadish, C. Room temperature GaAsSb single nanowire infrared photodetectors. Nanotechnology 2015, 26, 445202. [Google Scholar] [CrossRef]
- Li, Z.Y.; Yuan, X.M.; Gao, Q.; Yang, I.; Li, L.; Caroff, P.; Allen, M.; Allen, J.; Tan, H.H.; Jagadish, C.; et al. In situ passivation of GaAsSb nanowires for enhanced infrared photoresponse. Nanotechnology 2020, 31, 349601. [Google Scholar] [CrossRef]
- Mårtensson, T.; Svensson, C.P.T.; Wacaser, B.A.; Larsson, M.W.; Seifert, W.; Deppert, K.; Gustafsson, A.; Wallenberg, L.R.; Samuelson, L. Epitaxial III−V Nanowires on Silicon. Nano Lett. 2004, 4, 1987–1990. [Google Scholar] [CrossRef]
- Bolkhovityanov, Y.B.; Pchelyakov, O.P. GaAs epitaxy on Si substrates: Modern status of research and engineering. Physics 2008, 51, 437–456. [Google Scholar] [CrossRef]
- Borg, B.M.; Kimberly, A.D.; Joël, E.; Lars-Erik, W. Enhanced Sb incorporation in InAsSb nanowires grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 2011, 98, 113104. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Bao, X.Y.; Soci, C.; Ding, Y.; Wang, Z.L.; Wang, D. Direct Heteroepitaxy of Vertical InAs Nanowires on Si Substrates for Broad Band Photovoltaics and Photodetection. Nano Lett. 2009, 9, 2926–2934. [Google Scholar] [CrossRef] [PubMed]
- Cantoro, M.; Wang, G.; Lin, H.C.; Klekachev, A.V.; Richard, O.; Bender, H.; Kim, T.G.; Clemente, F.; Adelmann, C.; Veen, M.H.V.D.; et al. Large-area, catalyst-free heteroepitaxy of InAs nanowires on Si by MOVPE. Phys. Status Solidi A 2011, 208, 129–135. [Google Scholar] [CrossRef]
- Caroff, P.; Messing, M.E.; Borg, B.M.; Dick, K.A.; Deppert, K.; Wernersson, L.-E. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch. Nanotechnology 2009, 20, 495606. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, L.; Daniele, E.; Fabio, B.; Lucia, S. Growth mechanism of InAs–InSb heterostructured nanowires grown by chemical beam epitaxy. J. Cryst. Growth 2011, 323, 304–306. [Google Scholar]
- Nebol’sin, V.A.; Shchetinin, A.A. Role of surface energy in the vapor-liquid-solid growth of silicon. Inorg. Mater. 2003, 39, 899–903. [Google Scholar] [CrossRef]
- Borg, B.M.; Wernersson, L.E. Synthesis and properties of antimonide nanowires. Nanotechnology 2013, 24, 202001. [Google Scholar] [CrossRef]
- Sourribes, M.J.L.; Isakov, I.; Panfilova, M.; Liu, H.; Warburton, P.A. Mobility Enhancement by Sb-mediated Minimisation of Stacking Fault Density in InAs Nanowires Grown on Silicon. Nano Lett. 2014, 14, 1643–1650. [Google Scholar] [CrossRef] [Green Version]
- Stringfellow, G.B. Spinodal decomposition and clustering in III/V alloys. J. Electron. Mater. 1982, 11, 903–918. [Google Scholar] [CrossRef]
- Allen, J.E.; Hemesath, E.R.; Perea, D.E.; Lensch-Falk, J.L.; Li, Z.Y.; Yin, F.; Gass, M.H.; Wang, P.; Bleloch, A.L.; Palmer, R.E.; et al. High-resolution detection of Au catalyst atoms in Si Nanowires. Nat. Nanotechnol. 2008, 3, 168–173. [Google Scholar] [CrossRef]
- SenPo, Y.; Lifan, S.; Johnny, C.H. Recent advances in III–Sb nanowires: From synthesis to applications. Nanotechnology 2019, 30, 202003. [Google Scholar]
- Gao, Z.; Sun, J.; Han, M.; Yin, Y.; Gu, Y.; Yang, Z.X.; Zeng, H. Recent advances in Sb-based III–V nanowires. Nanotechnology 2019, 30, 212002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dingding, R.; Lyubomir, A.; Antonius, T.J.V.H.; Helge, W.; Bjørn-Ove, F. Epitaxially grown III–arsenide–antimonide nanowires for optoelectronic applications. Nanotechnology 2019, 30, 294001. [Google Scholar]
- Boras, G.; Yu, X.; Liu, H. III–V ternary nanowires on Si substrates: Growth, characterization and device applications. J. Semicond. 2019, 40, 101301. [Google Scholar] [CrossRef]
- Dick, K.A.; Caroff, P. Metal-seeded growth of III–V semiconductor nanowires: Towards gold-free synthesis. Nanoscale 2014, 6, 3006–3021. [Google Scholar] [CrossRef]
- Anyebe, E.A.; Zhuang, Q.; Sanchez, A.; Lawson, S.; Robson, A.J.; Ponomarenko, L.; Zhukov, A.; Kolosov, O. Self-catalysed growth of InAs nanowires on bare Si substrates by droplet Epitaxy. Phys. Status Solidi RRL 2014, 8, 658–662. [Google Scholar] [CrossRef]
- Anyebe, E.A.; Sandall, I.; Jin, Z.M.; Sanchez, A.M.; Rajpalke, M.K.; Veal, T.D.; Cao, Y.C.; Li, H.D.; Harvey, R.; Zhuang, Q.D. Optimization of self-catalyzed InAs Nanowires on flexible graphite for photovoltaic infrared photodetectors. Sci. Rep. 2017, 7, 46110. [Google Scholar] [CrossRef] [Green Version]
- Lixia, L.; Dong, P.; Xueshe, Y.; Hyok, S.; Jianhua, Z. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy. J. Semicond. 2017, 38, 103001. [Google Scholar]
- Vaddiraju, S.; Sunkara, M.K.; Chin, A.H.; Ning, C.Z.; Dholakia, G.R.; Meyyappan, M. Synthesis of Group III Antimonide Nanowires. J. Phys. Chem. C 2007, 111, 7339–7347. [Google Scholar] [CrossRef]
- Anyebe, E.A.; Zhuang, Q.; Robinson, B.J.; Kolosov, O.; Rajpalke, M.K.; Veal, T.D.; Falko, V. Realization of vertically aligned, ultra-high aspect ratio InAs1−xSbx nanowires on graphitic substrates. Nano Lett. 2015, 15, 4348–4355. [Google Scholar]
- Anyebe, E.A.; Rajpalke, M.K.; Veal, T.D.; Jin, C.J.; Wang, Z.M.; Zhuang, Q.D. Surfactant effect of antimony addition to the morphology of self-catalyzed InAs1−xSbx nanowires. Nano Res. 2014, 8, 1309–1319. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, E.; Karim, M.R.; Hafiz, S.B.; Reynolds, C.L.; Liu, Y.; Iyer, S.A. Two-Step Growth Pathway for High Sb Incorporation in GaAsSb Nanowires in the Telecommunication Wavelength Range. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Dimakis, E.; Lähnemann, J.; Jahn, U.; Breuer, S.; Hilse, M.; Geelhaar, L.; Riechert, H. Self-Assisted Nucleation and Vapor–Solid Growth of InAs Nanowires on Bare Si(111). Cryst. Growth Des. 2011, 11, 4001–4008. [Google Scholar] [CrossRef]
- Andreas, B.; Steffen, B.; Anton, D.; Lutz, G.; Ullrich, P. Structural evolution of self assisted GaAs nanowires grown on Si(111). Phys. Status Solidi RRL 2011, 5, 156–158. [Google Scholar]
- Du, W.-N.; Yang, X.-G.; Wang, X.-Y.; Pan, H.-Y.; Ji, H.-M.; Luo, S.; Yang, T.; Wang, Z.-G. The self-seeded growth of InAsSb nanowires on silicon by metal-organic vapor phase epitaxy. J. Cryst. Growth 2014, 396, 33–37. [Google Scholar] [CrossRef]
- Somaschini, C.; Bietti, S.; Trampert, A.; Jahn, U.; Hauswald, C.; Riechert, H.; Sanguinetti, S.; Geelhaar, L. Control over the Number Density and Diameter of GaAs Nanowires on Si(111) Mediated by Droplet Epitaxy. Nano Lett. 2013, 13, 3607–3613. [Google Scholar] [CrossRef]
- Küpers, H.; Lewis, R.B.; Tahraoui, A.; Matalla, M.; Krüger, O.; Bastiman, F.; Riechert, H.; Geelhaar, L. Diameter evolution of selective area grown Ga-assisted GaAs nanowires. Nano Res. 2018, 11, 2885–2893. [Google Scholar] [CrossRef] [Green Version]
- Morral, A.F.I.; Colombo, C.; Abstreiter, G.; Arbiol, J.; Morante, J.R. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Appl. Phys. Lett. 2008, 92, 63112. [Google Scholar] [CrossRef] [Green Version]
- Mandl, B.; Stangl, J.; Hilner, E.; Zakharov, A.A.; Hillerich, K.; Dey, A.W.; Samuelson, L.; Bauer, G.; Deppert, K.; Mikkelsen, A. Growth Mechanism of Self-Catalyzed Group III-V Nanowires. Nano Lett. 2010, 10, 4443–4449. [Google Scholar] [CrossRef]
- Mandl, B.; Stangl, J.; Mårtensson, T.; Mikkelsen, A.; Eriksson, J.; Karlsson, L.S.; Bauer, G.; Samuelson, L.; Seifert, W. Au-Free Epitaxial Growth of InAs Nanowires. Nano Lett. 2006, 6, 1817–1821. [Google Scholar] [CrossRef] [PubMed]
- Tomioka, K.; Mohan, P.; Noborisaka, J.; Hara, S.; Motohisa, J.; Fukui, T. Growth of highly uniform InAs nanowire arrays by selective-area MOVPE. J. Cryst. Growth 2007, 298, 644–647. [Google Scholar] [CrossRef]
- Bauer, B.; Rudolph, A.; Soda, M.; Morral, A.F.I.; Zweck, J.; Schuh, D.; Reiger, E. Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy. Nanotechnology 2010, 21, 435601. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.D.; Alhodaib, A.; Craig, A.P.; Robson, A.; Aziz, A.; Krier, A.; Svensson, J.; Wernersson, L.E.; Sanchez, A.M.; Marshall, A.R.J. Low Leakage-Current InAsSb Nanowire Photodetectors on Silicon. Nano Lett. 2016, 16, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Ren, D.; Azizur-Rahman, K.M.; Rong, Z.; Juang, B.C.; Somasundaram, S.; Shahili, M.; Farrell, A.C.; Williams, B.S.; Huffaker, D.L. Room-Temperature Midwavelength Infrared InAsSb Nanowire Photodetector Arrays with Al2O3 Passivation. Nano Lett. 2019, 19, 2793–2802. [Google Scholar] [CrossRef]
- Ren, D.; Dheeraj, D.L.; Jin, C.; Nilsen, J.S.; Huh, J.; Reinertsen, J.F.; Munshi, A.M.; Gustafsson, A.; van Helvoort, A.T.J.; Weman, H.; et al. New Insights into the Origins of Sb-Induced Effects on Self-Catalyzed GaAsSb Nanowire Arrays. Nano Lett. 2016, 16, 1201–1209. [Google Scholar] [CrossRef] [Green Version]
- Conesa-Boj, S.; Kriegner, D.; Han, X.-L.; Plissard, S.; Wallart, X.; Stangl, J.; Morral, A.F.I.; Caroff, P. Gold-Free Ternary III–V Antimonide Nanowire Arrays on Silicon: Twin-Free down to the First Bilayer. Nano Lett. 2014, 14, 326–332. [Google Scholar] [CrossRef]
- Arthur, J.R. Molecular beam epitaxy. Surf. Sci. 2002, 500, 189–217. [Google Scholar] [CrossRef]
- Besikci, C. III–V infrared detectors on Si substrates. Proc. SPIE 2000, 3948, 31–39. [Google Scholar]
- Xu, T.; Dick, K.A.; Plissard, S.; Nguyen, T.H.; Makoudi, Y.; Berthe, M.; Nys, J.P.; Wallart, X.; Grandidier, B.; Caroff, P. Faceting, composition and crystal phase evolution in III–V antimonide nanowire heterostructures revealed by combining microscopy techniques. Nanotechnology 2012, 23, 95702. [Google Scholar] [CrossRef]
- Ercolani, D.; Gemmi, M.; Nasi, L.; Rossi, F.; Pea, M.; Li, A.; Salviati, G.; Beltram, F.; Sorba, L. Growth of InAs/InAsSb heterostructured nanowires. Nanotechnology 2012, 23, 115606. [Google Scholar] [CrossRef]
- Anyebe, E.A.; Zhuang, Q. Self-catalysed InAs1−XSbx nanowires grown directly on bare Si substrates. Mater. Res. Bull. 2014, 60, 572–575. [Google Scholar] [CrossRef]
- Zhuang, Q.D.; Anyebe, E.A.; Chen, R.; Liu, H.; Sanchez, A.M.; Rajpalke, M.K.; Veal, T.D.; Wang, Z.M.; Huang, Y.Z.; Sun, H.D. Sb-Induced phase control of InAsSb nanowires grown by molecular beam epitaxy. Nano Lett. 2015, 15, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Yang, X.; Pan, H.; Wang, X.; Ji, H.; Luo, S.; Ji, X.; Wang, Z.; Yang, T. Two Different Growth Mechanisms for Au-Free InAsSb Nanowires Growth on Si Substrate. Cryst. Growth Des. 2015, 15, 2413–2418. [Google Scholar] [CrossRef]
- Wen, L.; Liu, L.; Liao, D.; Zhuo, R.; Pan, D.; Zhao, J. Silver-assisted growth of high-quality InAsSb nanowires by molecular-beam epitaxy. Nanotechnology 2020, 31, 465602. [Google Scholar] [CrossRef]
- Dheeraj, D.L.; Patriarche, G.; Largeau, L.; Zhou, H.L.; van Helvoort, A.T.J.; Glas, F.; Harmand, J.C.; Fimland, B.O.; Weman, H. Zinc blende GaAsSb nanowires grown by molecular beam epitaxy. Nanotechnology 2008, 19, 275605. [Google Scholar] [CrossRef] [PubMed]
- Plissard, S.; Dick, K.A.; Wallart, X.; Caroff, P. Gold-free GaAs/GaAsSb heterostructure nanowires grown on silicon. Appl. Phys. Lett. 2010, 96, 121901. [Google Scholar] [CrossRef] [Green Version]
- Munshi, A.M.; Dheeraj, D.L.; Todorovic, J.; van Helvoort, A.T.J.; Weman, H.; Fimland, B.-O. Crystal phase engineering in self-catalyzed GaAs and GaAs/GaAsSb nanowires grown on Si(111). J. Cryst. Growth 2013, 372, 163–169. [Google Scholar] [CrossRef]
- Alarcón-Lladó, E.; Conesa-Boj, S.; Wallart, X.; Caroff, P.; Morral, A.F.I. Raman spectroscopy of self-catalyzed GaAs1−xSbx nanowires grown on silicon. Nanotechnology 2013, 24, 405707. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Pan, D.; Xue, Y.; Wang, X.; Lin, M.; Su, D.; Zhang, Q.; Yu, X.; So, H.; Wei, D.; et al. Near Full-Composition-Range High-Quality GaAs1–xSbx Nanowires Grown by Molecular-Beam Epitaxy. Nano Lett. 2017, 17, 622–630. [Google Scholar] [CrossRef]
- Ahmad, E.; Ojha, S.K.; Kasanaboina, P.K.; Reynolds Jr, C.L.; Liu, Y.; Iyer, S. Bandgap tuning in GaAs1–xSbx axial nanowires grown by Ga-assisted molecular beam epitaxy. Semicond. Sci. Technol. 2017, 32, 035002. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Sibirev, N.V.; Cirlin, G.E.; Soshnikov, I.P.; Chen, W.H.; Larde, R.; Cade, E.l.; Pareige, P.; Xu, T.; Grandidier, B.; et al. Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires. Phys. Rev. B 2009, 79, 205316. [Google Scholar] [CrossRef]
- Koivusalo, E.; Helder, J.; Galeti, H.V.A.; Gobato, Y.G.; Guina, M.; Hakkarainen, T. The role of As species in self-catalyzed growth of GaAs and GaAsSb nanowires. Nanotechnology 2020, 202031, 465601. [Google Scholar] [CrossRef] [PubMed]
- Dimroth, F.; Agert, C.; Bett, A.W. Growth of Sb-based materials by MOVPE. J. Cryst. Growth 2003, 248, 265–273. [Google Scholar] [CrossRef]
- Kim, S.W.; Zimmer, J.P.; Ohnishi, S.; Tracy, J.B.; Frangioni, J.V.; Bawendi, M.G. Engineering InAsxP1−x/InP/ZnSe III–V alloyed core/ shell quantum dots for the near-infrared. J. Am. Chem. Soc. 2005, 127, 10526–10532. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Nötzel, R.; Veldhoven, P.J.V.; Eijkemans, T.J.; Wolter, J.H. Wavelength tuning of InAs quantum dots grown on InP (100) by chemical- beam epitaxy. Appl. Phys. Lett. 2004, 84, 275–277. [Google Scholar] [CrossRef] [Green Version]
- El-wahabb, E.A.; Fouad, S.S.; Fadel, M. Theoretical and experimental study of the conduction mechanism in Sb2 Se3 alloy. J. Mater. Sci. 2003, 38, 527–532. [Google Scholar] [CrossRef]
- Fouad, S.S.; Ammar, A.H.; Abo-Ghazala, M. The relationship between optical gap and chemical composition in SbxSe1−x system. Physica B. 1997, 229, 249–255 32. [Google Scholar] [CrossRef]
- Steinshnider, J.; Harper, J.; Weimer, M.; Lin, C.H.; Pei, S.S.; Chow, D.H. Origin of antimony segregation in GaInSb/ InAs strained-layer superlattices. Phys. Rev. Lett. 2000, 85, 4562–4565. [Google Scholar] [CrossRef]
- Woodruff, D.P.; Robinson, J. Sb-induced surface stacking faults at Ag (111) and Cu (111) surfaces: Density-functional theory results. J. Phys. 2000, 12, 7699–7704. [Google Scholar] [CrossRef]
- Tréglia, G.; Legrand, B.; Ducastelle, F.; Saúl, A.; Gallis, C.; Meunier, I.; Mottet, C.; Senhaji, A. Alloy surfaces: Segregation, reconstruction and phase transitions. Comput. Mater. Sci. 1999, 15, 196–235. [Google Scholar] [CrossRef]
- Portavoce, A.; Berbezier, I.; Gas, P.; Ronda, A. Sb surface segregation during epitaxial growth of SiGe heterostructures: The effects of Ge composition and biaxial stress. Phys. Rev. B 2004, 69, 155414. [Google Scholar] [CrossRef]
- Pindoria, G.; Kubiak, R.A.A.; Newstead, S.M.; Woodruff, D.P. The influence of atomic size on dopant accumulation and site occupation in molecular beam epitaxy. Surf. Sci. 1990, 234, 17–26. [Google Scholar] [CrossRef]
- Aqra, F.; Ayyad, A. Surface energies of metals in both liquid and solid states. Appl. Surf. Sci. 2011, 257, 6372–6379. [Google Scholar] [CrossRef]
- Yang, X.; Jurkovic, M.J.; Heroux, J.B.; Wang, W.I. Molecular beam epitaxial growth of InGaAsN:Sb/GaAs quantum wells for long-wavelength semiconductor lasers. Appl. Phys. Lett. 1999, 75, 178–180. [Google Scholar] [CrossRef]
- Jiang, C.; Sakaki, H. Sb/As intermixing in self-assembled GaSb/GaAs type II quantum dot systems and control of their photoluminescence spectra. Physica, E. 2005, 26, 180–184. [Google Scholar] [CrossRef]
- Jing, Y.; Bao, X.; Wei, W.; Li, C.; Sun, K.; Aplin, D.P.R.; Ding, Y.; Wang, Z.-L.; Bando, Y.; Wang, D. Catalyst-free Heteroepitaxial MOCVD Growth of InAs Nanowires on Si Substrates. J. Phys. Chem. C 2014, 118, 1696–1705. [Google Scholar] [CrossRef]
- Schroth, P.; Köhl, M.; Hornung, J.; Dimakis, E.; Somaschini, C.; Geelhaar, L.; Biermanns, A.; Bauer, S.; Lazarev, S.; Pietsch, U.; et al. Evolution of Polytypism in GaAs Nanowires during Growth Revealed by Time-Resolved in situ x-ray Diffraction. Phys. Rev. Lett. 2015, 114, 055504. [Google Scholar] [CrossRef]
- Schroth, P.; Jakob, J.; Feigl, L.; Kashani, S.M.M. Lithography-free variation of the number density of self-catalyzed GaAs nanowires and its impact on polytypism. MRS Commun. 2018, 8, 871–877. [Google Scholar] [CrossRef]
- Dick, K.A.; Caroff, P.; Bolinsson, J.; Messing, M.E.; Johansson, J.; Deppert, K.; Wallenberg, L.R.; Samuelson, L. Control of III–V nanowire crystal structure by growth parameter tuning. Semicond. Sci. Technol. 2010, 25, 24009. [Google Scholar] [CrossRef]
- Johansson, J.; Dick, K.A.; Caroff, P.; Messing, M.E.; Bolinsson, J.; Deppert, K.; Samuelson, L. Diameter dependence of the wurtzite−zinc blende transition in InAs nanowires. J. Phys. Chem. C. 2010, 114, 3837–3842. [Google Scholar] [CrossRef]
- Glas, F.; Harmand, J.C.; Patriarche, G. Why does wurtzite form in nanowires of III–V zinc blende semiconductors? Phys. Rev. Lett. 2007, 99, 146101. [Google Scholar] [CrossRef] [Green Version]
- Johansson, J.; Karlsson, L.S.; Dick, K.A.; Bolinsson, J.; Wacaser, B.A.; Deppert, K.; Samuelson, L. Effects of Supersaturation on the Crystal Structure of Gold Seeded III-V Nanowires. Cryst. Growth Des. 2009, 9, 766–773. [Google Scholar] [CrossRef]
- Krogstrup, P.; Curiotto, S.; Johnson, E.; Aagesen, M.; Nygard, J.; Chatain, D. Impact of the Liquid Phase Shape on the Structure of III-V Nanowires. Phys. Rev. Lett. 2011, 106, 125504. [Google Scholar] [CrossRef] [PubMed]
- Dubrovskii, V.G.; Sibirev, N.V.; Harmand, J.C.; Glas, F. Growth kinetics and crystal structure of semiconductor nanowires. Phys. Rev. B 2008, 78, 235301. [Google Scholar] [CrossRef]
- Wallentin, J.; Ek, M.; Wallenberg, L.R.; Samuelson, L.; Deppert, K.; Borgstrom, M.T. Changes in Contact Angle of Seed Particle Correlated with Increased Zincblende Formation in Doped InP Nanowires. Nano Lett. 2010, 10, 4807. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.D.; Alradhi, H.; Jin, Z.M.; Chen, X.R.; Shao, J.; Chen, X.; Sanchez, A.M.; Cao, Y.C.; Liu, J.Y.; Yates, P.; et al. Optically efficient InAsSb nanowires for silicon-based mid-wavelength infrared optoelectronics. Nanotechnology 2017, 28, 105710. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, P.; Sharma, M.; Nalamat, S.; Reynolds, C.L., Jr.; Liu, Y.; Iyer, S. Molecular beam epitaxial growth of high quality Ga-catalyzed GaAs1−xSbx (x > 0.8) nanowires on Si (111) with photoluminescence emission reaching 1.7μm. Semicond. Sci. Technol. 2018, 33, 125007. [Google Scholar] [CrossRef]
- Robson, M.; Azizur-Rahman, K.M.; Parent, D.; Wojdylo, P.; Thompson, A.D.; LaPierre, R.R. Multispectral Absorptance from Large-Diameter InAsSb Nanowire Arrays in a Single Epitaxial Growth on Silicon. Nano Futures 2017, 1, 035001. [Google Scholar] [CrossRef] [Green Version]
- Huh, J.; Yun, H.; Kim, D.-C.; Munshi, A.M.; Dheeraj, D.L.; Kauko, H.; van Helvoort, A.T.J.; Lee, S.; Fimland, B.-O.; Weman, H. Rectifying Single GaAsSb Nanowire Devices Based on Self-Induced Compositional Gradients. Nano Lett. 2015, 15, 3709–3715. [Google Scholar] [CrossRef]
- Huh, J.; Kim, D.-C.; Munshi, A.M.; Dheeraj, D.L.; Jang, D.; Kim, G.; Fimland, B.; Weman, H. Low frequency noise in single GaAsSb nanowires with self-induced compositional gradients. Nanotechnology 2016, 27, 385703. [Google Scholar] [CrossRef]
- Salimian, S.; Arif, O.; Zannier, V.; Ercolani, D.; Rossi, F.; Momtaz, Z.S.; Beltram, F.; Roddaro, S.; Rossella, F.; Sorba, L. Electrical probing of carrier separation in InAs/InP/GaAsSb core-dualshell nanowires. Nano Res. 2020, 13, 1065–1070. [Google Scholar] [CrossRef]
- Devkota, S.; Parakh, M.; Johnson, S.; Ramaswamy, P.; Lowe, M.; Penn, A.; Reynolds, L.; Iyer, S. A study of n-doping in self-catalyzed GaAsSb nanowires using GaTe dopant source and ensemble nanowire near-infrared photodetector. Nanotechnology 2020. Just accepted Paper. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Z.; Armour, E.A.; Zheng, K.; Schaus, C.F. Zinc And Tellurium Doping In GaAs and AlxGa1−XAs grown By MOCVD. J. Cryst. Growth 1991, 113, 103–112. [Google Scholar] [CrossRef]
S/N | Material | Growth Tech. | Growth Strategy | Time (min) | Temp (°C) | As Flux (Torr) | Vapor Phase (%) | Sb Flux * | L (μm) | D (nm) | (x) (at.%) | Ref. | Remarks |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | InAsSb | MBE | SC | 20 | 420–470 | 0.79 | 5.7 × 10−8 | 0.87 | 109 | 4.3 | [52] | ||
4.95 | 3.75 × 10−7 | 0.83 | 115 | 4.5 | |||||||||
2 | InAsSb | MBE | SC | 120 | 420–470 | 2.93 | 5.7 × 10−8–3.75 × 10−7 | 0.7 | 155 | 10.2 | [32] | 2D film obtained for x = 14.5% | |
3 | InAsSb | MOVPE | SS | 2 | 510 | 0.2 | 0.8 × 10–5 | 0.28 | ~50 | ~08 | [36] | ||
0.4 | 0.17 | ~90 | ~14 | ||||||||||
0.6 | 0.12 | ~240 | ~23 | ||||||||||
0.8 | 0.00 | ~480 | ~43 | ||||||||||
4 | GaAsSb | MBE | SC | 20 | 620 | - | - | 5.7 | ~ 86 | 2.8 | [61] | ||
5.4 | ~100 | 7.5 | |||||||||||
3.5 | ~110 | 11 | |||||||||||
2.5 | 125 | 16 | |||||||||||
5 | GaAsSb | MBE | SC | 35 | 625 | 2.5 × 10−6 | - | 2 × 10−7 | 3.00 | ~250 | 06 | [46] | |
35 | 625 | 2.5 × 10−6 | - | 4 × 10−7 | 2.65 | ~280 | 15 | ||||||
35 | 625 | 2.5 × 10−6 | - | 6 × 10−7 | 2.45 | ~315 | 16 | ||||||
35 | 625 | 2.5 × 10−6 | - | 8 × 10−7 | 2.05 | ~335 | 19 | ||||||
6 | GaAsSb | MBE | SC | 590 | 2.25 × 10−6 | 4.50 × 10−7 | ** 79 | ** 75 | 18 | [60] | 2D film obtained for x = 75% | ||
2.25 × 10−6 | 6.75 × 10−7 | ** 71 | ** 140 | 27 | |||||||||
2.25 × 10−6 | 1.43 × 10−6 | ** 22 | ** 175 | 35 | |||||||||
1.61 × 10−6 | 4.50 × 10−7 | ** 74 | ** 130 | 30 | |||||||||
9.75 × 10−7 | 4.50 × 10−7 | ** 49 | ** 192 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anyebe, E.A. Recent Progress on the Gold-Free Integration of Ternary III–As Antimonide Nanowires Directly on Silicon. Nanomaterials 2020, 10, 2064. https://doi.org/10.3390/nano10102064
Anyebe EA. Recent Progress on the Gold-Free Integration of Ternary III–As Antimonide Nanowires Directly on Silicon. Nanomaterials. 2020; 10(10):2064. https://doi.org/10.3390/nano10102064
Chicago/Turabian StyleAnyebe, Ezekiel Anyebe. 2020. "Recent Progress on the Gold-Free Integration of Ternary III–As Antimonide Nanowires Directly on Silicon" Nanomaterials 10, no. 10: 2064. https://doi.org/10.3390/nano10102064
APA StyleAnyebe, E. A. (2020). Recent Progress on the Gold-Free Integration of Ternary III–As Antimonide Nanowires Directly on Silicon. Nanomaterials, 10(10), 2064. https://doi.org/10.3390/nano10102064