The Mechanical Effect of MnO2 Layers on Electrochemical Actuation Performance of Nanoporous Gold
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baughman, R.H.; Cui, C.; Zakhidov, A.A.; Iqbal, Z.; Barisci, J.N.; Spinks, G.M.; Wallace, G.G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A.G.; et al. Carbon nanotube actuators. Science 1999, 284, 1340–1344. [Google Scholar] [CrossRef] [PubMed]
- Giorcelli, M.; Bartoli, M. Carbon Nanostructures for Actuators: An Overview of Recent Developments. Actuators 2019, 8, 46. [Google Scholar] [CrossRef]
- Hyeon, J.S.; Park, J.W.; Baughman, R.H.; Kim, S.J. Electrochemical graphene/carbon nanotube yarn artifificial muscles. Sens. Actuators B Chem. 2019, 286, 237–242. [Google Scholar] [CrossRef]
- Ru, J.; Bian, C.; Zhu, Z.; Wang, Y.; Zhang, J.; Horiuchi, T.; Sugino, T.; Liu, X.; Chen, H.; Asaka, K. Controllable and durable ionic electroactive polymer actuator based on nanoporous carbon nanotube film electrode. Smart Mater. Struct. 2019, 28, 085032. [Google Scholar] [CrossRef]
- Lu, W.; Fadeev, A.G.; Qi, B.; Smela, E.; Mattes, B.R.; Ding, J.; Spinks, G.M.; Mazurkiewicz, J.; Zhou, D.; Wallace, G.G.; et al. Forsyth, Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 2002, 297, 983–987. [Google Scholar] [CrossRef] [PubMed]
- Acerce, M.; Akdoğan, E.K.; Chhowalla, M. Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature 2017, 549, 370–373. [Google Scholar] [CrossRef]
- Ji, L.; Yu, Y.; Deng, Q.; Shen, S. Tailoring the nanostructures of electrochemical actuators for fast response and large deformation. Nanoscale 2020, 12, 15643–15651. [Google Scholar] [CrossRef]
- Weissmüller, J.; Viswanath, R.N.; Kramer, D.; Zimmer, P.; Würschum, R.; Gleiter, H. Charge-Induced Reversible Strain in a Metal. Science 2003, 300, 312–315. [Google Scholar] [CrossRef]
- Biener, J.; Wittstock, A.; Zepeda-Ruiz, L.A.; Biener, M.M.; Zielasek, V.; Kramer, D.; Viswanath, R.N.; Weissmüller, J.; Bäumer, M.; Hamza, A.V. Surface-Chemistry-Driven Actuation in Nanoporous Gold. Nat. Mater. 2009, 8, 47–51. [Google Scholar] [CrossRef]
- Wang, K.; Stenner, C.; Weissmüller, J. A nanoporous gold-polypyrrole hybrid nanomaterial for actuation. Sens. Actuators B Chem. 2017, 248, 622–629. [Google Scholar] [CrossRef]
- Detsi, E.; Onck, P.; De Hosson, J.T.M. Metallic Muscles at Work: High Rate Actuation in Nanoporous Gold/polyaniline Composites. ACS Nano 2013, 7, 4299–4306. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Gopal, V.; Weissmüller, J. Less Noble or More Noble: How Strain Affects the Binding of Oxygen on Gold. Angew. Chem. Int. Ed. 2015, 54, 12981–12985. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Weissmüller, J. Electrocapillary Coupling during Electrosorption. Langmuir 2014, 30, 10522–10530. [Google Scholar] [CrossRef]
- Deng, Q.; Gosslar, D.H.; Smetanin, M.; Weissmüller, J. Electrocapillary Coupling at Rough Surfaces. Phys. Chem. Chem. Phys. 2015, 17, 11725–11731. [Google Scholar] [CrossRef]
- Lafouresse, M.C.; Bertocci, U.; Stafford, G.R. Dynamic stress analysis applied to (111)-textured Pt in HClO4 electrolyte. J. Electrochem. Soc. 2013, 160, H636–H643. [Google Scholar] [CrossRef]
- Lafouresse, M.C.; Bertocci, U.; Stafford, G.R. Dynamic stress analysis applied to the electrodeposition of copper. J. Electrochem. Soc. 2015, 162, D27–D35. [Google Scholar] [CrossRef]
- Viswanath, R.N.; Weissmüller, J. Electrocapillary Coupling Coefficients for Hydrogen Electrosorption on Palladium. Acta Mater. 2013, 61, 6301–6309. [Google Scholar] [CrossRef]
- Weissmüller, J.; Kramer, D. Balance of Force at Curved Solid Metal−Liquid Electrolyte Interfaces. Langmuir 2005, 21, 4592–4603. [Google Scholar] [CrossRef] [PubMed]
- Kramer, D.; Viswanath, R.N.; Weissmüller, J. Surface-Stress Induced Macroscopic Bending of Nanoporous Gold Cantilevers. Nano Lett. 2004, 4, 793–796. [Google Scholar] [CrossRef]
- Detsi, E.; Punzhin, S.; Rao, J.; Onck, P.R.; De Hosson, J.T.M. Enhanced Strain in Functional Nanoporous Gold with a Dual Microscopic Length Scale Structure. ACS Nano 2012, 6, 3734–3744. [Google Scholar] [CrossRef]
- Detsi, E.; Chen, Z.G.; Vellinga, W.P.; Onck, P.R.; De Hosson, J.T.M. Actuating and Sensing Properties of Nanoporous Gold. J. Nanosci. Nanotechnol. 2012, 12, 4951–4955. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.J.; Wang, X.L.; Parida, S.; Wang, K.; Seo, M.; Weissmüller, J. Nanoporous Au-Pt Alloys as Large Strain Electrochemical Actuators. Nano Lett. 2010, 10, 187–194. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, Q.; Zhang, Z. Dealloying-Driven Nanoporous Palladium with Superior Electrochemical Actuation Performance. Nanoscale 2016, 8, 7287–7295. [Google Scholar] [CrossRef] [PubMed]
- Hakamada, M.; Matsumura, S.; Mabuchi, M. Electrochemical Actuation of Nanoporous Ni in NaOH Solution. Mater. Lett. 2012, 70, 132–134. [Google Scholar] [CrossRef]
- Cheng, C.; Ngan, A.H.W. Reversible Electrochemical Actuation of Metallic Nanohoneycombs Induced by Pseudocapacitive Redox Processes. ACS Nano 2015, 9, 3984–3995. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Ngan, A.H.W. Charge-Induced Reversible Bending in Nanoporous Alumina-Aluminum Composite. Appl. Phys. Lett. 2013, 102, 213119. [Google Scholar] [CrossRef]
- Cheng, C.; Weissmüller, J.; Ngan, A.H.W. Fast and Reversible Actuation of Metallic Muscles Composed of Nickel Nanowire-Forest. Adv. Mater. 2016, 28, 5315–5321. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; Wang, Y.; Zhang, J.; Ding, Y.; Peng, Z.; Zhang, Z. Hierarchically Nanoporous Nickel-Based Actuators with Giant Reversible Strain and Ultrahigh Work Density. J. Mater. Chem. C 2016, 4, 45–52. [Google Scholar] [CrossRef]
- Detsi, E.; Sellès, M.S.; Onck, P.R.; De Hosson, J.T.M. Nanoporous Silver as Electrochemical Actuator. Scr. Mater. 2013, 69, 195–198. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, L.; Gao, H.; Bai, Q.; Zhang, C.; Zhang, Z. Electrochemical actuation behaviors and mechanisms of bulk nanoporous Ni-Pd alloy. Scr. Mater. 2017, 137, 73–77. [Google Scholar] [CrossRef]
- Jin, H.J.; Parida, S.; Kramer, D.; Weissmüller, J. Sign-inverted surface stress-charge response in nanoporous gold. Surf. Sci. 2008, 602, 3588–3594. [Google Scholar] [CrossRef]
- Shi, S.; Markmann, J.; Weissmüller, J. Actuation by hydrogen electrosorption in hierarchical nanoporous palladium. Philos. Mag. 2017, 97, 1571–1587. [Google Scholar] [CrossRef]
- Zhang, S.M.; Jin, H.J. Multilayer-Structured Gold/nanoporous Gold Composite for High Performance Linear Actuation. Appl. Phys. Lett. 2014, 104, 101905. [Google Scholar] [CrossRef]
- Ye, X.L.; Liu, L.Z.; Jin, H.J. Responsive Nanoporous Metals: Recoverable Modulations on Strength and Shape by Watering. Nanotechnology 2016, 27, 325501. [Google Scholar] [CrossRef]
- Wu, P.; Ye, X.L.; Liu, L.Z.; Jin, H.J. Monolayer oxide enhanced flow stress in nanoporous gold: The size dependence. Mater. Res. Lett. 2018, 6, 508–514. [Google Scholar] [CrossRef]
- Roschning, B.; Weissmüller, J. Stress-charge coupling coefficient for thin-film polypyrrole actuators—Investigation of capacitive ion exchange in the oxidized state. Electrochim. Acta 2019, 318, 504–512. [Google Scholar] [CrossRef]
- Liu, L.; Su, L.; Lu, Y.; Zhang, Q.; Zhang, L.; Lei, S.; Shi, S.; Levi, M.D.; Yan, X. The Origin of Electrochemical Actuation of MnO2/Ni Bilayer Film Derived by Redox Pseudocapacitive Process. Adv. Funct. Mater. 2019, 29, 1806778. [Google Scholar] [CrossRef]
- Apuzzo, A.; Barretta, R.; Faghidian, S.A.; Luciano, R.; De Sciarra, F.M. Nonlocal strain gradient exact solutions for functionally graded inflected nano-beams. Compos. Part B Eng. 2019, 164, 667–674. [Google Scholar] [CrossRef]
- Barretta, R.; Caporale, A.; Faghidian, S.A.; Luciano, R.; de Sciarra, F.M.; Medaglia, C.M. A stress-driven local-nonlocal mixture model for Timoshenko nano-beams. Compos. Part B Eng. 2019, 164, 590–598. [Google Scholar] [CrossRef]
- Barretta, R.; Čanadija, M.; Marotti de Sciarra, F. Modified nonlocal strain gradient elasticity for nano-rods and application to carbon nanotubes. Appl. Sci. 2019, 9, 514. [Google Scholar] [CrossRef]
- Jin, H.J.; Weissmüller, J. Bulk Nanoporous Metal for Actuation. Adv. Eng. Mater. 2010, 12, 714–723. [Google Scholar] [CrossRef]
- Deng, Q.; Smetanin, M.; Weissmüller, J. Mechanical modulation of reaction rate in electrocatalysis. J. Catal. 2014, 309, 351. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, H.; Deng, Q. Understanding the copper underpotential deposition process at strained gold surface. Electrochem. Commun. 2017, 82, 125. [Google Scholar] [CrossRef]
- Sermeus, J.; Sinha, R.; Vanstreels, K.; Vereecken, P.M.; Glorieux, C. Determination of elastic properties of a MnO2 coating by surface acoustic wave velocity dispersion analysis. J. Appl. Phys. 2014, 116, 023503. [Google Scholar] [CrossRef]
- Wu, Y.; Markmann, J.; Lilleodden, T. Electro-chemo-mechanical coupling of nanoporous gold at the microscale. Appl. Phys. Lett. 2019, 115, 251602. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Qi, Z.; Wei, Q.; Deng, Q.; Wang, K. The Mechanical Effect of MnO2 Layers on Electrochemical Actuation Performance of Nanoporous Gold. Nanomaterials 2020, 10, 2056. https://doi.org/10.3390/nano10102056
Han Z, Qi Z, Wei Q, Deng Q, Wang K. The Mechanical Effect of MnO2 Layers on Electrochemical Actuation Performance of Nanoporous Gold. Nanomaterials. 2020; 10(10):2056. https://doi.org/10.3390/nano10102056
Chicago/Turabian StyleHan, Zhifei, Zhengpan Qi, Qiang Wei, Qibo Deng, and Ke Wang. 2020. "The Mechanical Effect of MnO2 Layers on Electrochemical Actuation Performance of Nanoporous Gold" Nanomaterials 10, no. 10: 2056. https://doi.org/10.3390/nano10102056
APA StyleHan, Z., Qi, Z., Wei, Q., Deng, Q., & Wang, K. (2020). The Mechanical Effect of MnO2 Layers on Electrochemical Actuation Performance of Nanoporous Gold. Nanomaterials, 10(10), 2056. https://doi.org/10.3390/nano10102056