A Facile Chemical Synthesis of PbTe Nanostructures at Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples
2.3. Characterization of Samples
3. Results and Discussion
3.1. Characterization of Samples
3.2. Cyclic Voltammetry (CV) Studies
3.3. Structural Analysis
3.4. Scanning Electron Microscope (SEM) and Elemental Studies
3.5. Fourier-Transform Infrared Spectroscopy (FTIR)
3.6. Thermo-Electromotive Force Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Feng, Y.; Witkoske, E.; Bell, E.S.; Wang, Y.; Tzempelikos, A.; Ferguson, I.T.; Lu, N. Advanced Metal Oxides and Nitrides Thermoelectric Materials for Energy Harvesting. ES Mater. Manuf. 2018, 1, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Freer, R.; Powell, A.V. Realising the potential of thermoelectric technology: A Roadmap. J. Mater. Chem. C 2020, 8, 441–463. [Google Scholar] [CrossRef]
- Soleimani, Z.; Zoras, S.; Ceranic, B.; Shahzad, S.; Cui, Y. A review on recent developments of thermoelectric materials for room-temperature applications. Sustain. Energy Technol. Assess. 2020, 37, 100604. [Google Scholar] [CrossRef]
- Beretta, D.; Neophytou, N.; Hodges, J.M.; Kanatzidis, M.G.; Narducci, D.; Martin-Gonzalez, D.; Beekman, M.; Balke, B.; Cerretti, G.; Tremel, W.; et al. Thermoelectrics: From history, a window to the future. Mater. Sci. Eng. R Rep. 2019, 138, 100501. [Google Scholar] [CrossRef]
- Harman, T.C.; Taylor, P.J.; Walsh, M.P.; LaForge, B.E. Quantum Dot Superlattice Thermoelectric Materials and Devices. Science 2002, 297, 2229–2232. [Google Scholar] [CrossRef] [Green Version]
- Wolf, M.; Hinterding, R.; Feldhoff, A. High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application. Entropy 2019, 21, 1058. [Google Scholar] [CrossRef] [Green Version]
- Hasdeo, E.H.; Krisna, L.P.A.; Hanna, M.Y.; Gunara, B.E.; Hung, N.T.; Nugraha, A.R.T. Optimal band gap for improved thermoelectric performance of two-dimensional Dirac materials. J. Appl. Phys. 2019, 126, 035109. [Google Scholar] [CrossRef] [Green Version]
- Hicks, L.D.; Harman, T.C.; Sun, X.; Dresselhaus, M.S. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1996, 53, R10493. [Google Scholar] [CrossRef]
- Disalvo, F.J. Thermoelectric cooling and power generation. Science 1999, 285, 703–706. [Google Scholar] [CrossRef]
- Božin, E.S.; Malliakas, C.D.; Souvatzis, P.; Proffen, T.; Spaldin, N.A.; Kanatzidis, M.G.; Billinge, S.J.L. Entropically stabilized local dipole formation in lead chalcogenides. Science 2010, 330, 1660–1663. [Google Scholar] [CrossRef]
- Delaire, O.; Ma, J.; Marty, K.; May, A.F.; McGuire, M.A.; Du, M.H.; Singh, D.J.; Podlesnyak, A.; Ehlers, G.; Lumsden, M.D.; et al. Giant anharmonic phonon scattering in PbTe. Nat. Mater. 2011, 10, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Zhao, L.D. Anharmoncity and low thermal conductivity in thermoelectrics. Mater. Today Phys. 2018, 4, 50–57. [Google Scholar] [CrossRef]
- Zhang, X.; Pei, Y. Manipulation of charge transport in thermoelectrics. NPJ Quantum Mater. 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Zhao, L.D. Charge and phonon transport in PbTe-based thermoelectric materials. NPJ Quantum Mater. 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Harman, T.C.; Taylor, P.J.; Spears, D.L.; Walsh, M.P. Thermoelectric quantum-dot superlattices with high ZT. J. Electron. Mater. 2000, 29, L1–L2. [Google Scholar] [CrossRef]
- Tan, G.; Ohta, M.; Kanatzidis, M.G. Thermoelectric power generation: From new materials to devices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180450. [Google Scholar] [CrossRef] [Green Version]
- Petsagkourakis, I.; Tybrandt, K.; Crispin, X.; Ohkubo, I.; Satoh, N.; Mori, T. Thermoelectric materials and applications for energy harvesting power generation. Sci. Technol. Adv. Mater. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sahay, S.S.; Guruswamy, S. Epitaxial growth of PbTe film on Si substrate. J. Mater. Sci. Lett. 1998. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, L.D.; Hao, S.; Jiang, Q.; Zheng, F.; Doak, J.W.; Wu, H.; Chi, H.; Gelbstein, Y.; Uher, C.; et al. Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. J. Am. Chem. Soc. 2014, 32, 1693–1701. [Google Scholar] [CrossRef]
- Hsu, K.F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J.S.; Uher, C.; Hogan, T.; Polychroniadis, E.K.; Kanatzidis, M.G. Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. Science 2004, 303, 818–821. [Google Scholar] [CrossRef]
- Lalonde, A.D.; Pei, Y.; Wang, H.; Jeffrey Snyder, G. Lead telluride alloy thermoelectrics. Mater. Today 2011, 303, 818–821. [Google Scholar] [CrossRef]
- Rull-Bravo, M.; Moure, A.; Fernández, J.F.; Martín-González, M. Skutterudites as thermoelectricmaterials: Revisited. RSC Adv. 2015, 5, 41653–41667. [Google Scholar] [CrossRef]
- Shi, X.; Yang, J.; Salvador, J.R.; Chi, M.; Cho, J.Y.; Wang, H.; Bai, S.; Yang, J.; Zhang, W.; Chen, L. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 2011, 133, 7837–7846. [Google Scholar] [CrossRef]
- Xing, Y.; Liu, R.; Liao, J.; Zhang, Q.; Xia, X.; Wang, C.; Huang, H.; Chu, J.; Gu, M.; Zhu, T.; et al. High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization. Energy Environ. Sci. 2019, 12, 3390–3399. [Google Scholar] [CrossRef]
- Xin, J.; Tang, Y.; Liu, Y.; Zhao, X.; Pan, H.; Zhu, T. Valleytronics in thermoelectric materials. NPJ Quantum Mater. 2018, 3. [Google Scholar] [CrossRef]
- Chen, Z.G.; Hana, G.; Yanga, L.; Cheng, L.; Zou, J. Nanostructured thermoelectric materials: Current research and future challenge. Prog. Nat. Sci. Mater. Int. 2012, 22, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G. Annealing temperature effect on properties of chemically deposited PbTe films and bulk. Mat. Sci. Indian J. 2015, 13, 325–335. [Google Scholar] [CrossRef]
- Hicks, L.D.; Dresselhaus, M.S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727–12731. [Google Scholar] [CrossRef]
- Poudeu, P.F.R.; D’Angelo, J.; Downey, A.D.; Short, J.L.; Hogan, T.P.; Kanatzidis, M.G. High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-type Na1−x PbmSby Tem+2. Angew. Chem. Int. Ed. 2006, 45, 3835–3839. [Google Scholar] [CrossRef]
- Sootsman, J.R.; Kong, H.; Uher, C.; D’Angelo, J.J.; Wu, C.I.; Hogan, T.P.; Caillat, T.; Kanatzidis, M.G. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angew. Chem. Int. Ed. Engl. 2008, 47, 8618–8622. [Google Scholar] [CrossRef]
- Pathan, H.M.; Lokhande, C.D. Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull. Mater. Sci. 2004, 27, 85–111. [Google Scholar] [CrossRef]
- Komissarova, T.; Khokhlov, D.; Ryabova, L.; Dashevsky, Z.; Kasiyan, V. Impedance of photosensitive nanocrystalline PbTe (In) films. Phys. Rev. B. 2007, 75, 195326. [Google Scholar] [CrossRef]
- Dong, P.; Wang, X.; Li, S.; Ni, Y. The role of HNO3 in the electrochemical deposition of dendritic PbTe microstructures. CrystEngComm 2018, 20, 1042–1049. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Lee, H.S. Formation mechanism of PbTe dendritic nanostructures grown by electrodeposition. Mater. Chem. Phys. 2017, 187, 82–87. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Cai, K.F.; Yao, X. Facile synthesis of PbTe nanoparticles and thin films in alkaline aqueous solution at room temperature. J. Solid State Chem. 2009, 182, 3383–3386. [Google Scholar] [CrossRef]
- Bhalekar, V.P.; Pathan, H.M. Strong Quantum Confined Lead Sulphide Quantum Dots using Ionic Reaction and Their properties. ES Mater. Manuf. 2019, 3, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Patil, R.S.; Pathan, H.M.; Gujar, T.P.; Lokhande, C.D. Characterization of chemically deposited nanocrystalline PbS thin films. J. Mater. Sci. 2006, 41, 5723–5725. [Google Scholar] [CrossRef]
- Kale, R.B.; Sartale, S.D.; Ganesan, V.; Lokhande, C.D.; Lin, Y.-F.; Lu, S.-Y. Room temperature chemical synthesis of lead selenide thin films with a preferred orientation. Appl. Surf. Sci. 2006, 253, 930–936. [Google Scholar] [CrossRef]
- Pop, I.; Nascu, C.; Ionescu, V.; Indrea, E.; Bratu, I. Structural and optical properties of PbS thin films obtained by chemical deposition. Thin Solid Film 1997, 307, 240. [Google Scholar] [CrossRef]
- Rempel, A.A.; Kozhevnikova, N.S.; Leenaers, A.J.G.; van den Berghe, S. Towards particle size regulation of chemically deposited lead sulfide (PbS). J. Cryst. Growth 2005, 280, 300–308. [Google Scholar] [CrossRef]
- Ghamsari, M.S.; Araghi, M.K.; Farahani, S.J. The influence of hydrazine hydrate on the photoconductivity of PbS thin film. Mater. Sci. Eng. B 2006, 133, 113–116. [Google Scholar] [CrossRef]
- Yang, Y.J.; Hu, S.S. The deposition of highly uniform and adhesive nanocrystalline PbS film from solution. Thin Solid Film 2008, 516, 6048–6051. [Google Scholar] [CrossRef]
- Gorer, S.; Albu-Yaron, A.; Hodes, G. Chemical Solution Deposition of Lead Selenide Films: A Mechanistic and Structural Study. Chem. Mater. 1995, 7, 1243. [Google Scholar] [CrossRef]
- Gorer, S.; Albu-Yaron, A.; Hodes, G. Quantum Size Effects in Chemically Deposited, Nanocrystalline Lead Selenide Films. J. Phys. Chem 1995, 99, 16442. [Google Scholar] [CrossRef]
- Zhang, W.X.; Yang, Z.H.; Liu, J.W.; Qian, Y.T.; Yu, W.C.; Jia, Y.B.; Liu, X.M.; Zhou, G.; Zhu, J.S. A Simple Synthesis of Nanocrystalline Binary Metal Chalcogenides in Alkaline Aqueous Solution. Solid State Chem. 2001, 161, 184–189. [Google Scholar] [CrossRef]
- Shi, X.-L.; Zou, J.; Chen, Z.-G. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev. 2020, 1–117. [Google Scholar] [CrossRef]
- Jia, B.H.; Jiang, B.B.; He. J.Q. Recent advances of n-type low-cost PbSe-based thermoelectric materials. Mater. Today Adv. 2019, 4, 100029. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, Y.; Wang, D.; Qin, B.; Huang, Z.; Zhao, L.-D. An approach of enhancing thermoelectric performance for p-type PbS: Decreasing electronic thermal conductivity. J. Alloys Compd. 2020, 820, 153453. [Google Scholar] [CrossRef]
- Zhou, M.; Li, J.-F.; Kita, T. Nanostructured AgPbmSbTem+2 System Bulk Materials with Enhanced Thermoelectric Performance. J. Am. Chem. Soc. 2008, 130, 4527–4532. [Google Scholar] [CrossRef]
- Wang, W.; Poudel, B.; Wang, D.; Ren, Z. Synthesis of PbTeNanoboxes Using a Solvothermal Technique. Adv. Mater. 2005, 17, 2110–2114. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, X.; Wang, W.; Li, X. Facile Synthesis of a Hierarchical PbTe Flower-like Nanostructure and Its Shape Evolution Process Guided by a Kinetically Controlled Regime. Chem. Mater. 2007, 19, 5207–5209. [Google Scholar] [CrossRef]
- Murphy, J.E.; Beard, M.C.; Norman, A.G.; Ahrenkiel, S.P.; Johnson, J.C.; Yu, P.; Mićić, O.I.; Ellingson, R.J.; Nozik, A.J. PbTe Colloidal Nanocrystals: Synthesis, Characterization, and Multiple Exciton Generation. J. Am. Chem. Soc. 2006, 128, 3241–3247. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.F.; Lou, Y.B.; Samia, A.C.S.; Devadoss, A.; Burgess, J.D.; Dayal, S.; Burda, C. PbTenanorods by sonoelectrochemistry. Angew. Chem. Int. Ed. 2005, 44, 5855–5857. [Google Scholar] [CrossRef]
- Gite, A.B.; Palve, B.M.; Gaikwad, V.B.; Jain, G.H.; Pathan, H.M. Synthesis and characterization of electrodeposited lead telluride films on copper and stainless steel substrate. Mater. Res. Express 2019, 6. [Google Scholar] [CrossRef]
- Martin-Gonzales, M.S.; Prieto, A.L.; Gronsky, R.; Sands, T.; Stacy, A.M. Insights into the electrodeposition of Bi2Te3. J. Electrochem. Soc. 2002, 149, C546–C554. [Google Scholar] [CrossRef] [Green Version]
- Haram, S.K.; Quinn, B.M.; Bard, A.J. Electrochemistry of CdS Nanoparticles: A Correlation between Optical and Electrochemical Band Gaps. J. Am. Chem. Soc. 2001, 123, 8860–8861. [Google Scholar] [CrossRef]
- Ganguly, M.; Rout, S.K.; Sinha, T.P.; Sharma, S.K.; Park, H.Y.; Ahn, C.W.; Kim, I.W. Characterization and Rietveld Refinement of A-site deficient Lanthanum doped Barium Titanate. J. Alloys Compd. 2013, 579, 473–484. [Google Scholar] [CrossRef]
- Kadel, K.; Kumari, L.; Wang, X.; Li, W.; Huang, J.Y.; Provencio, P.P. Synthesis and structure of undoped and indium-doped thermoelectric lead telluride nanoparticles. Nanoscale Res. Lett. 2014, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Williamson, G.B.; Smallman, R.C. Dislocation densities in some annealed and cold-worked metals from measurements on the Xray Debye-Scherrer spectrum. Philos. Mag. 1956, 1, 34–36. [Google Scholar] [CrossRef]
- Peters, J.L.; De Wit, J.; Vanmaekelbergh, D. Sizing Curve, Absorption Coefficient, Surface Chemistry, and Aliphatic Chain Structure of PbTe Nanocrystals. Chem. Mater. 2019, 31, 1672–1680. [Google Scholar] [CrossRef]
- Pawar, S.B.; Shaikh, J.S.; Devan, R.S.; Ma, Y.R.; Haranath, D.; Bhosale, P.N.; Patil, P.S. Facile and low cost chemosynthesis of nanostructured PbS with tunable optical properties. Appl. Surf. Sci. 2011, 258, 1869–1875. [Google Scholar] [CrossRef]
- Pan, Y.; Bai, H.; Pan, L.; Li, Y.; Tamargo, M.C.; Sohel, M.; Lombardi, J.R. Size controlled synthesis of monodisperse PbTe quantum dots: Using oleylamine as the capping ligand. J. Mater. Chem. 2012. [Google Scholar] [CrossRef]
- Nithiyanantham, U.; Ozaydin, M.F.; Tazebay, A.S.; Kundu, S. Low-temperature formation of rectangular PbTe nanocrystals and their thermoelectric properties. New J. Chem. 2016, 40, 265–277. [Google Scholar] [CrossRef]
- Tzounis, L.; Liebscher, M.; Fuge, R.; Leonhardt, A.; Mechtcherine, V. P- and n-type thermoelectric cement composites with CVD grown p- and n-doped carbon nanotubes: Demonstration of a structural thermoelectric generator. Energy Build. 2019. [Google Scholar] [CrossRef]
- Crocker, A.J. The role of sodium in lead telluride. J. Phys. Chem. Solids 1967, 28, 1903–1912. [Google Scholar] [CrossRef]
- Ito, M.; Seo, W.S.; Koumoto, K.; Mater, J. Thermo-electric properties of PbTe thin films prepared by gas evaporation method. J. Mater. Res. 1999, 14, 209. [Google Scholar] [CrossRef]
- Zhu, P.W.; Chen, L.X.; Jia, X.; Ma, H.A.; Ren, G.Z.; Guo, W.L.; Zhang, W.; Zou, G.T. Thermoelectric properties of PbTe prepared at high pressure and high temperature. J. Phys. Condens. Matter 2002, 44, 11185–11188. [Google Scholar] [CrossRef]
(h k l) | 2 (Degree) | d Spacing (Å) | FWHM (× 10−3) | Crystallite Size (nm) |
---|---|---|---|---|
(1 1 0) | 24.15 | 3.72 | 2.004 | 42.37 |
(2 0 0) | 27.94 | 3.22 | 2.004 | 42.70 |
(2 2 0) | 39.91 | 2.28 | 4.004 | 22.04 |
(3 1 1) | 49.10 | 1.86 | 2.004 | 45.55 |
(2 2 1) | 57.30 | 1.61 | 4.008 | 23.61 |
(4 2 0) | 64.60 | 1.44 | 2.004 | 49.02 |
(4 2 2) | 72.04 | 1.31 | 4.008 | 25.62 |
Sample | Element | Te (L) | Pb (M) | Total |
---|---|---|---|---|
A1 | Weight % | 7.82 | 15.25 | 23.06 |
Atomic % | 45.43 | 54.57 | 100 | |
A5 | Weight % | 30.76 | 16.69 | 46.47 |
Atomic % | 53.15 | 46.85 | 100 |
Peak No. | X (cm−1) | Y (%T) | Peak No. | X (cm−1) | Y (%T) |
---|---|---|---|---|---|
1 | 2980.04 | 52.10 | 6 | 1270.56 | 58.49 |
2 | 2882.32 | 56.13 | 7 | 1152.32 | 62.51 |
3 | 2776.28 | 56.17 | 8 | 943.53 | 62.38 |
4 | 1572.67 | 58.11 | 9 | 908.60 | 63.56 |
5 | 1385.47 | 50.94 | 10 | 842.71 | 61.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gite, A.B.; Palve, B.M.; Gaikwad, V.B.; Jain, G.H.; Pathan, H.M.; Haj Bloukh, S.; Edis, Z. A Facile Chemical Synthesis of PbTe Nanostructures at Room Temperature. Nanomaterials 2020, 10, 1915. https://doi.org/10.3390/nano10101915
Gite AB, Palve BM, Gaikwad VB, Jain GH, Pathan HM, Haj Bloukh S, Edis Z. A Facile Chemical Synthesis of PbTe Nanostructures at Room Temperature. Nanomaterials. 2020; 10(10):1915. https://doi.org/10.3390/nano10101915
Chicago/Turabian StyleGite, Anil B., Balasaheb M. Palve, Vishwasrao B. Gaikwad, Gotan H. Jain, Habib M. Pathan, Samir Haj Bloukh, and Zehra Edis. 2020. "A Facile Chemical Synthesis of PbTe Nanostructures at Room Temperature" Nanomaterials 10, no. 10: 1915. https://doi.org/10.3390/nano10101915
APA StyleGite, A. B., Palve, B. M., Gaikwad, V. B., Jain, G. H., Pathan, H. M., Haj Bloukh, S., & Edis, Z. (2020). A Facile Chemical Synthesis of PbTe Nanostructures at Room Temperature. Nanomaterials, 10(10), 1915. https://doi.org/10.3390/nano10101915