Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu5FeS4 Nano-Icosahedrons: An in Situ Heating TEM Study
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Stability Study at Ambient Temperature
3.2. Thermal Stability Studies by In Situ TEM
3.3. The Formation Mechanisim of Core-Shell Structures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Q.; Lee, I.; Joo, J.B.; Zaera, F.; Yin, Y.D. Core-shell nanostructured catalysts. Accounts Chem. Res. 2012, 46, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Elzatahry, A.; Aldhayan, D.; Zhao, D.Y. Core-shell structured titanium dioxide nanomaterials for solar energy utilization. Chem. Soc. Rev. 2018, 47, 8203–8237. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.B.; Yuan, X.Z.; Liang, J.; Zhang, J.; Wang, H.; Zeng, G.M. Nanostructured core-shell electrode materials for electrochemical capacitors. J. Power Sour. 2016, 331, 408–425. [Google Scholar] [CrossRef]
- Karnati, P.; Akbar, S.; Morris, P.A. Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: A review. Sensor Actuat. B Chem. 2019, 295, 127–143. [Google Scholar] [CrossRef]
- Zhong, Q.X.; Cao, M.H.; Hu, H.C.; Yang, D.; Chen, M.; Li, P.L.; Wu, L.Z.; Zhang, Q. One-Pot Synthesis of Highly Stable CsPbBr3@SiO2 Core-Shell Nanoparticles. ACS Nano 2018, 12, 8579–8587. [Google Scholar] [CrossRef]
- Chi, M.F.; Wang, C.; Lei, Y.K.; Wang, G.F.; Li, D.G.; More, K.L.; Lupini, A.; Allard, L.F.; Markovic, N.M.; Stamenkovic, V.R. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing. Nat. Commun. 2015, 6, 8925. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, C.; Ho, G.W. In situ dissolution-diffusion toward homogeneous multiphase Ag/Ag2S@ ZnS core-shell heterostructures for enhanced photocatalytic performance. J. Phys. Chem. C 2015, 119, 1667–1675. [Google Scholar] [CrossRef]
- Han, G.; Chen, Z.G.; Yang, L.; Cheng, L.N.; Jack, K.; Drennan, J.; Zou, J. Thermal stability and oxidation of layer-structured rhombohedral In3Se4 nanostructures. Appl. Phys. Lett. 2013, 103, 263105. [Google Scholar] [CrossRef]
- Zhang, B.; Peng, K.L.; Li, A.; Zhou, X.Y.; Chen, Y.H.; Deng, Q.S.; Han, X.D. The chemistry and structural thermal stability of hole-doped single crystalline SnSe. J. Alloy Compd. 2016, 688, 1088–1094. [Google Scholar] [CrossRef]
- Hai, H.T.; Takamura, H.; Koike, J. Oxidation behavior of Cu-Ag core-shell particles for solar cell applications. J. Alloy Compd. 2013, 56, 71–77. [Google Scholar] [CrossRef]
- Bonifacio, C.S.; Carenco, S.; Wu, C.H.; House, S.D.; Bluhm, H.; Yang, J.C. Thermal stability of core-shell nanoparticles: A combined in situ study by XPS and TEM. Chem. Mater. 2015, 27, 6960–6968. [Google Scholar] [CrossRef]
- Schnedlitz, M.; Lasserus, M.; Meyer, R.; Knez, D.; Hofer, F.; Ernst, W.E.; Hauser, A.W. Stability of Core-Shell Nanoparticles for Catalysis at Elevated Temperatures: Structural Inversion in the Ni-Au System Observed at Atomic Resolution. Chem. Mater. 2018, 30, 1113–1120. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.D. Thermoelectric materials: Energy conversion between heat and electricity. J. Mat. 2015, 1, 92–105. [Google Scholar] [CrossRef]
- Chen, Z.G.; Shi, X.L.; Zhao, L.D.; Zou, J. High-performance SnSe thermoelectric materials: Progress and future challenge. Prog. Mater. Sci. 2018, 97, 283–346. [Google Scholar] [CrossRef]
- Ovik, F.R.; Long, B.D.; Barma, M.C.; Riaz, M.; Sabri, M.F.M.; Said, S.M.; Saidur, R. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew. Sustain. Energy Rev. 2016, 64, 635–659. [Google Scholar]
- Mamur, H.; Bhuiyan, M.R.A.; Korkmaz, F.; Nil, M. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew. Sustain. Energy Rev. 2018, 82, 4159–4169. [Google Scholar] [CrossRef]
- Biswas, K.; He, J.Q.; Blum, I.D.; Wu, C.I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef]
- Huang, L.S.; Han, G.; Zhang, B.; Gregory, D.H. Anion-exchange Synthesis of Thermoelectric Layered SnS0.1Se0.9-xTex Nano/microstructures in Aqueous Solution: Complexity and Carrier Concentration. J. Mater. Chem. C 2019, 7, 7572. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Y.; Ning, S.C.; Zhao, L.D.; Pennycook, S.J. Seeing atomic-scale structural origins and foreseeing new pathways to improved thermoelectric materials. Mater. Horiz. 2019, 6, 1548–1570. [Google Scholar] [CrossRef]
- Qiu, P.F.; Zhang, T.S.; Qiu, Y.T.; Shi, X.; Chen, L.D. Sulfide bornite thermoelectric material: A natural mineral with ultralow thermal conductivity. Energ. Environ. Sci. 2014, 7, 4000–4006. [Google Scholar] [CrossRef]
- Kumar, V.P.; Barbier, T.; Lemoine, P.; Raveau, B.; Nassif, V.; Guilmeau, E. The crucial role of selenium for sulphur substitution in the structural transitions and thermoelectric properties of Cu5FeS4 bornite. Dalton Trans. 2017, 46, 2174–2183. [Google Scholar] [CrossRef] [PubMed]
- Long, S.O.J.; Powell, A.V.; Vaqueiro, P.; Hull, S. High thermoelectric performance of bornite through control of the Cu (II) content and vacancy concentration. Chem. Mater. 2018, 30, 456–464. [Google Scholar] [CrossRef]
- Moghaddam, A.O.; Shokuhfar, A.; Guardia, P.; Zhang, Y.; Cabot, A. Substantial role of doping in the thermoelectric and hardness properties of nanostructured bornite, Cu5FeS4. J. Alloy Compd. 2019, 773, 1064–1074. [Google Scholar] [CrossRef]
- Kumar, P.; Gusain, M.; Kumar, P.S.; Umaa, S.; Nagarajan, R. A simple one pot synthesis of cubic Cu5FeS4. RSC Adv. 2014, 4, 52633–52636. [Google Scholar] [CrossRef]
- Zhang, A.J.; Shen, X.C.; Zhang, Z.; Lu, X.; Yao, W.; Dai, J.Y.; Xie, D.D.; Guo, L.J.; Wang, G.Y.; Zhou, X.Y. Large-scale colloidal synthesis of Cu5FeS4 compounds and their application in thermoelectrics. J. Mater. Chem. C 2017, 5, 301–308. [Google Scholar] [CrossRef]
- Moghaddam, A.O.; Shokuhfar, A.; Cabot, A.; Zolriasatein, A. Synthesis of bornite Cu5FeS4 nanoparticles via high energy ball milling: Photocatalytic and thermoelectric properties. Powder Technol. 2018, 333, 160–166. [Google Scholar] [CrossRef]
- Zhang, A.J.; Zhang, B.; Lu, W.; Xie, D.D.; Ou, H.X.; Han, X.D.; Dai, J.Y.; Lu, X.; Han, G.; Wang, G.Y.; et al. Twin Engineering in Solution-Synthesized Nonstoichiometric Cu5FeS4 Icosahedral Nanoparticles for Enhanced Thermoelectric Performance. Adv. Func. Mater. 2018, 28, 705117. [Google Scholar]
- Putnis, A.; Grace, J. The transformation behaviour of bornite. Contrib. Mineral. Petr. 1976, 55, 311–315. [Google Scholar] [CrossRef]
- Koto, K.; Morimoto, N. Superstructure investigation of bornite, Cu5FeS4, by the modified partial Patterson function. Acta Cryst. 1975, B31, 2268–2273. [Google Scholar] [CrossRef]
- Ding, Y.; Veblen, D.R.; Prewitt, C.T. High-resolution transmission electron microscopy (HRTEM) study of the 4a and 6a superstructure of bornite Cu5FeS4. Am. Mineral. 2005, 90, 1256–1264. [Google Scholar] [CrossRef]
- Ding, Y.; Veblen, D.R.; Prewitt, C.T. Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4). Am. Mineral. 2005, 90, 1265–1269. [Google Scholar] [CrossRef]
- Lee, J.W.; Stein, G.D. Structure change with size of argon clusters formed in laval nozzle beams. J. Phys. Chem. 1987, 91, 2450–2457. [Google Scholar] [CrossRef]
- Howie, A.; Marks, L.D. Elastic strains and the energy balance for multiply twinned particles. Philos. Mag. A 1984, 49, 95–109. [Google Scholar] [CrossRef]
- Pohl, D.; Wiesenhütter, U.; Mohn, E.; Schultz, L.; Rellinghaus, B. Near-Surface Strain in Icosahedra of Binary Metallic Alloys: Segregational versus Intrinsic Effects. Nano Lett. 2014, 14, 1776–1784. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kashida, S. X-ray study of the average structures of Cu2Se and Cu1.8S in the room temperature and the high temperature phases. J. Solid State Chem. 1991, 93, 202–211. [Google Scholar] [CrossRef]
- Marks, L.D. Inhomogeneous strains in small particles. Surf. Sci. 1985, 150, 302–318. [Google Scholar] [CrossRef]
- Peng, L.; Van Duyne, R.P.; Marks, L.D. Strain-induced segregation in bimetallic multiply twinned particles. J. Phys. Chem. Lett. 2015, 6, 1930–1934. [Google Scholar] [CrossRef]
- Marks, L.D. Experimental studies of small particle structures. Rep. Prog. Phys. 1994, 57, 603. [Google Scholar] [CrossRef]
- Ajayan, P.M.; Marks, L.D. Phase instabilities in small particles. Phase Transit. 1990, 24, 229–258. [Google Scholar] [CrossRef]






| Core | Shell | |||||
|---|---|---|---|---|---|---|
| No | Cu (at%) | Fe (at%) | S (at%) | Cu (at%) | Fe (at%) | S (at%) |
| 1 | 51.5 | 11.6 | 36.9 | 63.4 | 4.8 | 31.8 |
| 2 | 52.3 | 11.1 | 36.6 | 63.3 | 4.7 | 32.0 |
| 3 | 48.6 | 14.4 | 37.0 | 63.8 | 3.9 | 32.3 |
| 4 | 46.1 | 15.1 | 38.4 | 63.0 | 4.6 | 32.4 |
| 5 | 46.5 | 15.1 | 38.4 | 60.2 | 5.8 | 34.0 |
| 6 | 44.0 | 16.6 | 39.4 | 64.4 | 4.3 | 31.3 |
| 7 | 49.5 | 13.3 | 37.2 | 64.0 | 4.6 | 31.4 |
| 8 | 52.4 | 11.5 | 36.1 | 64.6 | 4.6 | 31.1 |
| 9 | 49.5 | 13.3 | 37.2 | 63.6 | 4.8 | 31.6 |
| 10 | 46.8 | 15.0 | 38.2 | 64.6 | 4.0 | 31.4 |
| 11 | 48.3 | 13.9 | 37.8 | 64.6 | 3.7 | 31.8 |
| 12 | 45.1 | 157 | 39.2 | 63.9 | 3.7 | 32.4 |
| 13 | 41.8 | 18.3 | 39.9 | 63.3 | 4.4 | 32.4 |
| 14 | 51.6 | 12.2 | 36.2 | 63.8 | 4.4 | 31.8 |
| 15 | 49.9 | 11.9 | 38.2 | 64.5 | 4.2 | 31.3 |
| 16 | 50.1 | 12.4 | 37.5 | 63.8 | 3.6 | 32.6 |
| 17 | 52.6 | 11.6 | 35.8 | 63.6 | 4.5 | 31.9 |
| 18 | 47.7 | 14.0 | 38.3 | 63.5 | 5.0 | 31.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Zhao, X.; Dong, T.; Zhang, A.; Zhang, X.; Han, G.; Zhou, X. Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu5FeS4 Nano-Icosahedrons: An in Situ Heating TEM Study. Nanomaterials 2020, 10, 4. https://doi.org/10.3390/nano10010004
Zhang B, Zhao X, Dong T, Zhang A, Zhang X, Han G, Zhou X. Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu5FeS4 Nano-Icosahedrons: An in Situ Heating TEM Study. Nanomaterials. 2020; 10(1):4. https://doi.org/10.3390/nano10010004
Chicago/Turabian StyleZhang, Bin, Xiaowei Zhao, Tianrui Dong, Aijuan Zhang, Xiao Zhang, Guang Han, and Xiaoyuan Zhou. 2020. "Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu5FeS4 Nano-Icosahedrons: An in Situ Heating TEM Study" Nanomaterials 10, no. 1: 4. https://doi.org/10.3390/nano10010004
APA StyleZhang, B., Zhao, X., Dong, T., Zhang, A., Zhang, X., Han, G., & Zhou, X. (2020). Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu5FeS4 Nano-Icosahedrons: An in Situ Heating TEM Study. Nanomaterials, 10(1), 4. https://doi.org/10.3390/nano10010004

