Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu5FeS4 Nano-Icosahedrons: An in Situ Heating TEM Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Stability Study at Ambient Temperature
3.2. Thermal Stability Studies by In Situ TEM
3.3. The Formation Mechanisim of Core-Shell Structures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Q.; Lee, I.; Joo, J.B.; Zaera, F.; Yin, Y.D. Core-shell nanostructured catalysts. Accounts Chem. Res. 2012, 46, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Elzatahry, A.; Aldhayan, D.; Zhao, D.Y. Core-shell structured titanium dioxide nanomaterials for solar energy utilization. Chem. Soc. Rev. 2018, 47, 8203–8237. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.B.; Yuan, X.Z.; Liang, J.; Zhang, J.; Wang, H.; Zeng, G.M. Nanostructured core-shell electrode materials for electrochemical capacitors. J. Power Sour. 2016, 331, 408–425. [Google Scholar] [CrossRef]
- Karnati, P.; Akbar, S.; Morris, P.A. Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: A review. Sensor Actuat. B Chem. 2019, 295, 127–143. [Google Scholar] [CrossRef]
- Zhong, Q.X.; Cao, M.H.; Hu, H.C.; Yang, D.; Chen, M.; Li, P.L.; Wu, L.Z.; Zhang, Q. One-Pot Synthesis of Highly Stable CsPbBr3@SiO2 Core-Shell Nanoparticles. ACS Nano 2018, 12, 8579–8587. [Google Scholar] [CrossRef]
- Chi, M.F.; Wang, C.; Lei, Y.K.; Wang, G.F.; Li, D.G.; More, K.L.; Lupini, A.; Allard, L.F.; Markovic, N.M.; Stamenkovic, V.R. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing. Nat. Commun. 2015, 6, 8925. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Zhang, C.; Ho, G.W. In situ dissolution-diffusion toward homogeneous multiphase Ag/Ag2S@ ZnS core-shell heterostructures for enhanced photocatalytic performance. J. Phys. Chem. C 2015, 119, 1667–1675. [Google Scholar] [CrossRef]
- Han, G.; Chen, Z.G.; Yang, L.; Cheng, L.N.; Jack, K.; Drennan, J.; Zou, J. Thermal stability and oxidation of layer-structured rhombohedral In3Se4 nanostructures. Appl. Phys. Lett. 2013, 103, 263105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Peng, K.L.; Li, A.; Zhou, X.Y.; Chen, Y.H.; Deng, Q.S.; Han, X.D. The chemistry and structural thermal stability of hole-doped single crystalline SnSe. J. Alloy Compd. 2016, 688, 1088–1094. [Google Scholar] [CrossRef]
- Hai, H.T.; Takamura, H.; Koike, J. Oxidation behavior of Cu-Ag core-shell particles for solar cell applications. J. Alloy Compd. 2013, 56, 71–77. [Google Scholar] [CrossRef]
- Bonifacio, C.S.; Carenco, S.; Wu, C.H.; House, S.D.; Bluhm, H.; Yang, J.C. Thermal stability of core-shell nanoparticles: A combined in situ study by XPS and TEM. Chem. Mater. 2015, 27, 6960–6968. [Google Scholar] [CrossRef]
- Schnedlitz, M.; Lasserus, M.; Meyer, R.; Knez, D.; Hofer, F.; Ernst, W.E.; Hauser, A.W. Stability of Core-Shell Nanoparticles for Catalysis at Elevated Temperatures: Structural Inversion in the Ni-Au System Observed at Atomic Resolution. Chem. Mater. 2018, 30, 1113–1120. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.D. Thermoelectric materials: Energy conversion between heat and electricity. J. Mat. 2015, 1, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.G.; Shi, X.L.; Zhao, L.D.; Zou, J. High-performance SnSe thermoelectric materials: Progress and future challenge. Prog. Mater. Sci. 2018, 97, 283–346. [Google Scholar] [CrossRef] [Green Version]
- Ovik, F.R.; Long, B.D.; Barma, M.C.; Riaz, M.; Sabri, M.F.M.; Said, S.M.; Saidur, R. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew. Sustain. Energy Rev. 2016, 64, 635–659. [Google Scholar]
- Mamur, H.; Bhuiyan, M.R.A.; Korkmaz, F.; Nil, M. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew. Sustain. Energy Rev. 2018, 82, 4159–4169. [Google Scholar] [CrossRef]
- Biswas, K.; He, J.Q.; Blum, I.D.; Wu, C.I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef]
- Huang, L.S.; Han, G.; Zhang, B.; Gregory, D.H. Anion-exchange Synthesis of Thermoelectric Layered SnS0.1Se0.9-xTex Nano/microstructures in Aqueous Solution: Complexity and Carrier Concentration. J. Mater. Chem. C 2019, 7, 7572. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Y.; Ning, S.C.; Zhao, L.D.; Pennycook, S.J. Seeing atomic-scale structural origins and foreseeing new pathways to improved thermoelectric materials. Mater. Horiz. 2019, 6, 1548–1570. [Google Scholar] [CrossRef]
- Qiu, P.F.; Zhang, T.S.; Qiu, Y.T.; Shi, X.; Chen, L.D. Sulfide bornite thermoelectric material: A natural mineral with ultralow thermal conductivity. Energ. Environ. Sci. 2014, 7, 4000–4006. [Google Scholar] [CrossRef]
- Kumar, V.P.; Barbier, T.; Lemoine, P.; Raveau, B.; Nassif, V.; Guilmeau, E. The crucial role of selenium for sulphur substitution in the structural transitions and thermoelectric properties of Cu5FeS4 bornite. Dalton Trans. 2017, 46, 2174–2183. [Google Scholar] [CrossRef] [PubMed]
- Long, S.O.J.; Powell, A.V.; Vaqueiro, P.; Hull, S. High thermoelectric performance of bornite through control of the Cu (II) content and vacancy concentration. Chem. Mater. 2018, 30, 456–464. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, A.O.; Shokuhfar, A.; Guardia, P.; Zhang, Y.; Cabot, A. Substantial role of doping in the thermoelectric and hardness properties of nanostructured bornite, Cu5FeS4. J. Alloy Compd. 2019, 773, 1064–1074. [Google Scholar] [CrossRef]
- Kumar, P.; Gusain, M.; Kumar, P.S.; Umaa, S.; Nagarajan, R. A simple one pot synthesis of cubic Cu5FeS4. RSC Adv. 2014, 4, 52633–52636. [Google Scholar] [CrossRef]
- Zhang, A.J.; Shen, X.C.; Zhang, Z.; Lu, X.; Yao, W.; Dai, J.Y.; Xie, D.D.; Guo, L.J.; Wang, G.Y.; Zhou, X.Y. Large-scale colloidal synthesis of Cu5FeS4 compounds and their application in thermoelectrics. J. Mater. Chem. C 2017, 5, 301–308. [Google Scholar] [CrossRef]
- Moghaddam, A.O.; Shokuhfar, A.; Cabot, A.; Zolriasatein, A. Synthesis of bornite Cu5FeS4 nanoparticles via high energy ball milling: Photocatalytic and thermoelectric properties. Powder Technol. 2018, 333, 160–166. [Google Scholar] [CrossRef]
- Zhang, A.J.; Zhang, B.; Lu, W.; Xie, D.D.; Ou, H.X.; Han, X.D.; Dai, J.Y.; Lu, X.; Han, G.; Wang, G.Y.; et al. Twin Engineering in Solution-Synthesized Nonstoichiometric Cu5FeS4 Icosahedral Nanoparticles for Enhanced Thermoelectric Performance. Adv. Func. Mater. 2018, 28, 705117. [Google Scholar]
- Putnis, A.; Grace, J. The transformation behaviour of bornite. Contrib. Mineral. Petr. 1976, 55, 311–315. [Google Scholar] [CrossRef]
- Koto, K.; Morimoto, N. Superstructure investigation of bornite, Cu5FeS4, by the modified partial Patterson function. Acta Cryst. 1975, B31, 2268–2273. [Google Scholar] [CrossRef]
- Ding, Y.; Veblen, D.R.; Prewitt, C.T. High-resolution transmission electron microscopy (HRTEM) study of the 4a and 6a superstructure of bornite Cu5FeS4. Am. Mineral. 2005, 90, 1256–1264. [Google Scholar] [CrossRef]
- Ding, Y.; Veblen, D.R.; Prewitt, C.T. Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4). Am. Mineral. 2005, 90, 1265–1269. [Google Scholar] [CrossRef]
- Lee, J.W.; Stein, G.D. Structure change with size of argon clusters formed in laval nozzle beams. J. Phys. Chem. 1987, 91, 2450–2457. [Google Scholar] [CrossRef]
- Howie, A.; Marks, L.D. Elastic strains and the energy balance for multiply twinned particles. Philos. Mag. A 1984, 49, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Pohl, D.; Wiesenhütter, U.; Mohn, E.; Schultz, L.; Rellinghaus, B. Near-Surface Strain in Icosahedra of Binary Metallic Alloys: Segregational versus Intrinsic Effects. Nano Lett. 2014, 14, 1776–1784. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kashida, S. X-ray study of the average structures of Cu2Se and Cu1.8S in the room temperature and the high temperature phases. J. Solid State Chem. 1991, 93, 202–211. [Google Scholar] [CrossRef]
- Marks, L.D. Inhomogeneous strains in small particles. Surf. Sci. 1985, 150, 302–318. [Google Scholar] [CrossRef]
- Peng, L.; Van Duyne, R.P.; Marks, L.D. Strain-induced segregation in bimetallic multiply twinned particles. J. Phys. Chem. Lett. 2015, 6, 1930–1934. [Google Scholar] [CrossRef]
- Marks, L.D. Experimental studies of small particle structures. Rep. Prog. Phys. 1994, 57, 603. [Google Scholar] [CrossRef]
- Ajayan, P.M.; Marks, L.D. Phase instabilities in small particles. Phase Transit. 1990, 24, 229–258. [Google Scholar] [CrossRef]
Core | Shell | |||||
---|---|---|---|---|---|---|
No | Cu (at%) | Fe (at%) | S (at%) | Cu (at%) | Fe (at%) | S (at%) |
1 | 51.5 | 11.6 | 36.9 | 63.4 | 4.8 | 31.8 |
2 | 52.3 | 11.1 | 36.6 | 63.3 | 4.7 | 32.0 |
3 | 48.6 | 14.4 | 37.0 | 63.8 | 3.9 | 32.3 |
4 | 46.1 | 15.1 | 38.4 | 63.0 | 4.6 | 32.4 |
5 | 46.5 | 15.1 | 38.4 | 60.2 | 5.8 | 34.0 |
6 | 44.0 | 16.6 | 39.4 | 64.4 | 4.3 | 31.3 |
7 | 49.5 | 13.3 | 37.2 | 64.0 | 4.6 | 31.4 |
8 | 52.4 | 11.5 | 36.1 | 64.6 | 4.6 | 31.1 |
9 | 49.5 | 13.3 | 37.2 | 63.6 | 4.8 | 31.6 |
10 | 46.8 | 15.0 | 38.2 | 64.6 | 4.0 | 31.4 |
11 | 48.3 | 13.9 | 37.8 | 64.6 | 3.7 | 31.8 |
12 | 45.1 | 157 | 39.2 | 63.9 | 3.7 | 32.4 |
13 | 41.8 | 18.3 | 39.9 | 63.3 | 4.4 | 32.4 |
14 | 51.6 | 12.2 | 36.2 | 63.8 | 4.4 | 31.8 |
15 | 49.9 | 11.9 | 38.2 | 64.5 | 4.2 | 31.3 |
16 | 50.1 | 12.4 | 37.5 | 63.8 | 3.6 | 32.6 |
17 | 52.6 | 11.6 | 35.8 | 63.6 | 4.5 | 31.9 |
18 | 47.7 | 14.0 | 38.3 | 63.5 | 5.0 | 31.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Zhao, X.; Dong, T.; Zhang, A.; Zhang, X.; Han, G.; Zhou, X. Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu5FeS4 Nano-Icosahedrons: An in Situ Heating TEM Study. Nanomaterials 2020, 10, 4. https://doi.org/10.3390/nano10010004
Zhang B, Zhao X, Dong T, Zhang A, Zhang X, Han G, Zhou X. Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu5FeS4 Nano-Icosahedrons: An in Situ Heating TEM Study. Nanomaterials. 2020; 10(1):4. https://doi.org/10.3390/nano10010004
Chicago/Turabian StyleZhang, Bin, Xiaowei Zhao, Tianrui Dong, Aijuan Zhang, Xiao Zhang, Guang Han, and Xiaoyuan Zhou. 2020. "Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu5FeS4 Nano-Icosahedrons: An in Situ Heating TEM Study" Nanomaterials 10, no. 1: 4. https://doi.org/10.3390/nano10010004
APA StyleZhang, B., Zhao, X., Dong, T., Zhang, A., Zhang, X., Han, G., & Zhou, X. (2020). Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu5FeS4 Nano-Icosahedrons: An in Situ Heating TEM Study. Nanomaterials, 10(1), 4. https://doi.org/10.3390/nano10010004