Depth-Sensing Indentation Creep Behavior of Nanostructured Thermal Barrier Coatings from As-Synthesized t’-8YSZ Feedstocks
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Darolia, R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects. Int. Mater. Rev. 2013, 58, 315–348. [Google Scholar] [CrossRef]
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.Q.; Vassen, R.; Stoever, D. Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 2004, 24, 1–10. [Google Scholar] [CrossRef]
- Vaßen, R.; Jarligo, M.O.; Steinke, T.; Mack, D.E.; Stover, D. Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 2010, 205, 938–942. [Google Scholar] [CrossRef]
- Evans, A.G.; Mumm, D.R.; Hutchinson, J.W.; Meier, G.H.; Pettit, F.S. Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 2001, 46, 505–553. [Google Scholar] [CrossRef]
- Levi, C.G.; Hutchinson, J.W.; Vidal-Sétif, M.H.; Johnson, C.A. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull. 2012, 37, 932–941. [Google Scholar] [CrossRef] [Green Version]
- Skordaris, G.; Bouzakis, K.D.; Kotsanis, T.; Charalampous, P.; Bouzakis, E.; Lemmer, O.; Bolz, S. Film thickness effect on mechanical properties and milling performance of nano-structured multilayer PVD coated tools. Surf. Coat. Technol. 2016, 307, 452–460. [Google Scholar] [CrossRef]
- Merenkov, I.S.; Katsui, H.; Khomyakov, M.N.; Sulyaeva, V.S.; Pushkarev, R.V.; Tu, R.; Goto, T.; Kosinova, M.L. Extraordinary synergetic effect of precursors in laser CVD deposition of SiBCN films. J. Eur. Ceram. Soc. 2019, 39, 5123–5131. [Google Scholar] [CrossRef]
- Weber, M.; Julbe, A.; Ayral, A.; Miele, P.; Bechelany, M. Atomic Layer Deposition for Membranes: Basics, Challenges, and Opportunities. Chem. Mater. 2018, 30, 7368–7390. [Google Scholar] [CrossRef]
- Vardelle, A.; Moreau, C.; Akedo, J.; Ashrafizadeh, H.; Berndt, C.C.; Berghaus, J.O.; Boulos, M.; Brogan, J.; Bourtsalas, A.C.; Dolatabadi, A.; et al. The 2016 Thermal Spray Roadmap. J. Therm. Spray Technol. 2016, 25, 1376–1440. [Google Scholar] [CrossRef]
- Bakan, E.; Vaßen, R. Ceramic top coats of plasma-sprayed thermal barrier coatings: Materials, processes, and properties. J. Therm. Spray Technol. 2017, 26, 992–1010. [Google Scholar] [CrossRef]
- Gan, J.A.; Berndt, C.C. Nanocomposite coatings: Thermal spray processing, microstructure and performance. Int. Mater. Rev. 2015, 60, 195–244. [Google Scholar] [CrossRef]
- Zhou, F.F.; Wang, Y.; Liu, M.; Deng, C.M.; Zhang, X.F. Thermo-physical and thermal insulation properties of multi-scale nanostructured thermal barrier coatings using as-prepared t’-8YSZ feedstocks. Ceram. Int. 2019, 45, 24096–24103. [Google Scholar] [CrossRef]
- Yang, D.M.; Gao, Y.; Liu, H.J.; Sun, C.Q. Thermal shock resistance of bimodal structured thermal barrier coatings by atmospheric plasma spraying using nanostructured partially stabilized zirconia. Surf. Coat. Technol. 2017, 315, 9–16. [Google Scholar] [CrossRef]
- Loghman-Estarki, M.R.; Razavi, R.S.; Edris, H.; Bakhshi, S.R.; Nejati, M.; Jamali, H. Comparison of hot corrosion behavior of nanostructured ScYSZ and YSZ thermal barrier coatings. Ceram. Int. 2016, 42, 7432–7439. [Google Scholar] [CrossRef]
- Lima, R.S.; Kucuk, A.; Berndt, C.C. Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia. Mater. Sci. Eng. A 2002, 327, 224–232. [Google Scholar] [CrossRef]
- Lima, R.S.; Kucuk, A.; Berndt, C.C. Evaluation of microhardness and elastic modulus of thermally sprayed nanostructured zirconia coatings. Surf. Coat. Technol. 2001, 135, 166–172. [Google Scholar] [CrossRef]
- Lima, R.S.; Marple, B.R. Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects. Mater. Sci. Eng. A 2008, 485, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, R.; Vakilifard, H. Plasma-sprayed nanostructured YSZ thermal barrier coatings: Thermal insulation capability and adhesion strength. Ceram. Int. 2017, 43, 8556–8563. [Google Scholar] [CrossRef]
- Zhou, F.F.; Zhang, Z.G.; Liu, S.Y.; Wang, L.; Jia, J.; Wang, Y.; Gong, X.; Gou, J.F.; Deng, C.M.; Liu, M. Effect of heat treatment and synergistic rare-earth modifed NiCrAlY on bonding strength of nanostructured 8YSZ coatings. Appl. Surf. Sci. 2019, 480, 636–645. [Google Scholar] [CrossRef]
- Weber, M.; Coy, E.; Iatsunskyi, I.; Yate, L.; Miele, P.; Bechelany, M. Mechanical properties of boron nitride thin films prepared by atomic layer deposition. CrystEngComm 2017, 19, 6089–6094. [Google Scholar] [CrossRef]
- Chawla, V.; Ruoho, M.; Weber, M.; Chaaya, A.A.; Taylor, A.A.; Charmette, C.; Miele, P.; Bechelany, M.; Michler, J.; Utke, I. Fracture Mechanics and Oxygen Gas Barrier Properties of Al2O3/ZnO Nanolaminates on PET Deposited by Atomic Layer Deposition. Nanomaterials 2019, 9, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemin, R.; Shoja-Razavi, R.; Mozafarinia, R.; Jamali, H. Comparison of microstructure and mechanical properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram. Int. 2013, 39, 8805–8813. [Google Scholar] [CrossRef]
- Lamuta, C.; Girolamo, G.D.; Pagnotta, L. Microstructural, mechanical and tribological properties of nanostructured YSZ coatings produced with different APS process parameters. Ceram. Int. 2015, 41, 8904–8914. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Sun, X.G.; He, J.Q.; Pan, Z.Y.; Wang, C.H. Microstructure and indentation mechanical properties of plasma sprayed nano-bimodal and conventional ZrO2-8wt%Y2O3 thermal barrier coatings. Vacuum 2012, 86, 1174–1185. [Google Scholar] [CrossRef]
- Wei, Z.Y.; Cai, H.N.; Tahir, A.; Zhang, W.W.; Li, X.F.; Zhang, Y.; Huang, Y.P.; Liu, Y. Stress states in plasma-sprayed thermal barrier coatings upon temperature cycling: Combined effects of creep, plastic deformation, and TGO growth. Ceram. Int. 2019, 45, 19829–19844. [Google Scholar] [CrossRef]
- Zhou, F.F.; Wang, Y.; Wang, L.; Wang, Y.M.; Chen, W.L.; Huang, C.X.; Liu, M. Synthesis and characterization of nanostructured t’-YSZ spherical feedstocks for atmospheric plasma spraying. J. Alloys Compd. 2018, 740, 610–616. [Google Scholar] [CrossRef]
- Zhou, F.F.; Deng, C.M.; Wang, Y.; Liu, M.; Wang, L.; Wang, Y.M.; Zhang, X.F. Characterization of multi-scale synergistic toughened nanostructured YSZ thermal barrier coatings: From feedstocks to coatings. J. Eur. Ceram. Soc. 2019. [Google Scholar] [CrossRef]
- Li, C.Y.; Ding, J.Q.; Zhu, F.P.; Yin, J.F.; Wang, Z.; Zhao, Y.C.; Kou, S.Z. Indentation creep behavior of Fe-based amorphous coatings fabricated by high velocity Oxy-fuel. J. Non-Cryst. Solids 2019, 503–504, 62–68. [Google Scholar] [CrossRef]
- Babu, P.S.; Jha, R.; Guzman, M.; Sundararajan, G.; Agarwal, A. Indentation creep behavior of cold sprayed aluminum amorphous/nano-crystalline coatings. Mater. Sci. Eng. A 2016, 658, 415–421. [Google Scholar] [CrossRef]
- Dean, J.; Campbell, J.; Aldrich-Smith, G.; Clyne, T.W. A critical assessment of the “stable indenter velocity” method for obtaining the creep stress exponent from indentation data. Acta Mater. 2014, 80, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Chinh, N.Q.; Szommer, P. Mathematical description of indentation creep and its application for the determination of strain rate sensitivity. Mater. Sci. Eng. A 2014, 611, 333–336. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.M.; Huang, P.; Wang, W.L.; Lu, T.J.; Xu, K.W. Nanoscale creep deformation in Zr-based metallic glass. Intermetallics 2013, 38, 156–160. [Google Scholar] [CrossRef]
- Cruse, T.A.; Johnsen, B.P.; Nagy, A. Mechanical properties testing and results for thermal barrier coatings. J. Therm. Spray Technol. 1997, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.M.; Miller, R.A. Sintering and creep behavior of plasma-sprayed zirconia- and hafnia-based thermal barrier coatings. Surf. Coat. Technol. 1998, 108–109, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Jan, V.; Dorcakova, F.; Dusza, J.; Bartsch, M. Indentation creep of free-standing EB-PVD thermal barrier coatings. Surf. Coat. Technol. 2008, 28, 241–246. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Liu, M.; Wang, Y.; Wang, Y.; Deng, C. Depth-Sensing Indentation Creep Behavior of Nanostructured Thermal Barrier Coatings from As-Synthesized t’-8YSZ Feedstocks. Nanomaterials 2020, 10, 38. https://doi.org/10.3390/nano10010038
Zhou F, Liu M, Wang Y, Wang Y, Deng C. Depth-Sensing Indentation Creep Behavior of Nanostructured Thermal Barrier Coatings from As-Synthesized t’-8YSZ Feedstocks. Nanomaterials. 2020; 10(1):38. https://doi.org/10.3390/nano10010038
Chicago/Turabian StyleZhou, Feifei, Min Liu, Yaming Wang, You Wang, and Chunming Deng. 2020. "Depth-Sensing Indentation Creep Behavior of Nanostructured Thermal Barrier Coatings from As-Synthesized t’-8YSZ Feedstocks" Nanomaterials 10, no. 1: 38. https://doi.org/10.3390/nano10010038
APA StyleZhou, F., Liu, M., Wang, Y., Wang, Y., & Deng, C. (2020). Depth-Sensing Indentation Creep Behavior of Nanostructured Thermal Barrier Coatings from As-Synthesized t’-8YSZ Feedstocks. Nanomaterials, 10(1), 38. https://doi.org/10.3390/nano10010038