Visible Light Photodegradation of Formaldehyde over TiO2 Nanotubes Synthesized via Electrochemical Anodization of Titanium Foil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ionic Liquid
2.2. Synthesis of TiO2 Nanotubes
2.3. TiO2 Nanotubes Characterization
2.4. Photodegradation of Formaldehyde
3. Results and Discussion
3.1. Characterization of the TiO2 Nanotubes
3.1.1. Surface Morphology
3.1.2. XPS Analysis
3.1.3. Optical Properties
3.1.4. XRD Analysis
3.2. Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Ho, S.S.H.; Lu, Y.; Niu, R.; Xu, L.; Cao, J.; Lee, S. Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect. Molecules 2016, 21, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Liang, R.; Hu, A.; Huang, Z.; Zhou, Y.N. Generation of Oxygen Vacancies in Visible Light Activated One-Dimensional Iodine TiO2 Photocatalysts. RSC Adv. 2014, 4, 36959–36966. [Google Scholar] [CrossRef]
- Lin, L.; Chai, Y.; Zhao, B.; Wei, W.; He, D.; He, B.; Tang, Q. Photocatalytic Oxidation for Degradation of VOCs. OJIC 2013, 3, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, G.D.; Larsen, S.T.; Wolkoff, P. Re-evaluation of the WHO (2010) Formaldehyde Indoor Air Quality Guideline for Cancer Risk Assessment. Arch. Toxicol. 2017, 91, 35–61. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Xu, Z.; Yu, J.; Jaroniec, M. Enhanced Formaldehyde Oxidation on CeO2/AlOOH-supported Pt Catalyst at Room Temperature. Appl. Catal. B Environ. 2016, 199, 458–465. [Google Scholar] [CrossRef]
- Tasbihi, M.; Bendyna, J.K.; Notten, P.H.L.; Hintzen, H.T. A Short Review on Photocatalytic Degradation of Formaldehyde. J. Nanosci. Nanotechnol. 2015, 15, 6386–6396. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Wu, X.; Zhang, G. Pt-TiO2 Microspheres with Exposed {001} Facets for Degradation of Formaldehyde in Air: Formation Mechanism and Enhanced Visible Light Photocatalytic Activity. Mater. Res. Bull. 2017, 96, 262–269. [Google Scholar] [CrossRef]
- Zhang, W.; Song, N.; Guan, L.; Li, F.; Yao, M. Photocatalytic Degradation of Formaldehyde by Nanostructured TiO2 Composite Films. J. Exp. Nanosci. 2016, 11, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Wu, C. Facile One-Step Synthesis of N-doped ZnO Micropolyhedrons for Efficient Photocatalytic Degradation of Formaldehyde Under Visible-Light Irradiation. Appl. Surf. Sci. 2014, 319, 237–243. [Google Scholar] [CrossRef]
- Chang, Y.C.; Yan, C.Y.; Wu, R.J. Preparation of Pt@SnO2 Core-Shell Nanoparticles for Photocatalytic Degradation of Formaldehyde. J. Chin. Chem. Soc. 2014, 61, 345–349. [Google Scholar] [CrossRef]
- Nazari, M.; Golestani-Fard, F.; Bayati, R.; Eftekhari-Yekta, B. Enhanced Photocatalytic Activity in Anodized WO3-loaded TiO2 Nanotubes. Superlattices Microstruct. 2015, 80, 91–101. [Google Scholar] [CrossRef]
- Regonini, D.; Clemens, F.J. Anodized TiO2 Nanotubes: Effect of Anodizing Time on Film Length, Morphology and Photoelectrochemical Properties. Mater. Lett. 2015, 142, 97–101. [Google Scholar] [CrossRef]
- Qin, L.; Chen, Q.; Lan, R.; Jiang, R.; Quan, X.; Xu, B.; Zhang, F.; Jia, Y. Effect of Anodization Parameters on Morphology and Photocatalysis Properties of TiO2 Nanotube Arrays. J. Mater. Sci. Technol. 2015, 31, 1059–1064. [Google Scholar] [CrossRef]
- Puga, A.V. Photocatalytic Production of Hydrogen from Biomass-Derived Feedstocks. Coord. Chem. Rev. 2016, 315, 1–66. [Google Scholar] [CrossRef]
- Liang, H.; Li, X. Effects of Structure of Anodic TiO2 Nanotube Arrays on Photocatalytic Activity for the Degradation of 2,3-Dichlorophenol in Aqueous Solution. J. Hazard. Mater. 2009, 162, 1415–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Fagan, R.; McCormack, D.E.; Dionysiou, D.D.; Pillai, S.C. A Review of Solar and Visible Light Active TiO2 Photocatalysis for Treating Bacteria, Cyanotoxins and Contaminants of Emerging Concern. Mater. Sci. Semicond. Proc. 2016, 42, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Wu, R.J. The Degradation of Formaldehyde Using a Pt@TiO2 Nanoparticles in Presence of Visible Light Irradiation at Room Temperature. J. Taiwan Inst. Chem. Eng. 2015, 50, 276–281. [Google Scholar] [CrossRef]
- Xu, S.; Lu, W.; Chen, S.; Xu, Z.; Xu, T.; Sharma, V.K.; Chen, W. Colored TiO2 Composites Embedded on Fabrics as Photocatalysts: Decontamination of Formaldehyde and Deactivation of Bacteria in Water and Air. Chem. Eng. J. 2019, 375, 121949. [Google Scholar] [CrossRef]
- Tamilselvan, A.; Balakumar, S. Anatase TiO2 Nanotube by Electrochemical Anodization Method: Effect of Tubes Dimension on the Supercapacitor Application. Ionics 2016, 22, 99–105. [Google Scholar] [CrossRef]
- Galstyan, V.; Comini, E.; Baratto, C.; Ferroni, M.; Poli, N.; Faglia, G.; Bontempi, E.; Brisotto, M.; Sberveglieri, G. Two-phase Titania Nanotubes for Gas Sensing. Procedia Eng. 2014, 87, 176–179. [Google Scholar] [CrossRef] [Green Version]
- Adán, C.; Marugán, J.; Sánchez, E.; Pablos, C.; van Grieken, R. Understanding the Effect of Morphology on the Photocatalytic Activity of TiO2 Nanotube Array Electrodes. Electrochim. Acta 2016, 191, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Sreekantan, S.; Saharudin, K.A.; Wei, L.C. Formation of TiO2 Nanotubes via Anodization and Potential Applications for Photocatalysts, Biomedical Materials, and Photoelectrochemical cell. IOP Conf. Ser. Mater. Sci. Eng. 2011, 21, 012002. [Google Scholar] [CrossRef]
- Nguyen, Q.A.; Bhargava, Y.V.; Devine, T.M. Titania Nanotube Formation in Chloride and Bromide Containing Electrolytes. Electrochem. Commun. 2008, 10, 471–475. [Google Scholar] [CrossRef]
- Allam, N.K.; Shankar, K.; Grimes, C.A. Photoelectrochemical and Water Photoelectrolysis Properties of Ordered TiO2 Nanotubes Fabricated by Ti Anodization in Fluoride-Free HCl Electrolytes. J. Mater. Chem. 2008, 18, 2341–2348. [Google Scholar] [CrossRef]
- Taib, M.A.A.; Majnis, M.F.; Berahim, M. Formation of Titanium Dioxide Nanoparticles by Anodization of Valve Metals. J. Prog. Energy Environ. 2018, 7, 11–19. [Google Scholar]
- Hahn, R.; Macak, J.M.; Schmuki, P. Rapid Anodic Growth of TiO2 and WO3 Nanotubes in Fluoride Free Electrolytes. Electrochem. Commun. 2007, 9, 947–952. [Google Scholar] [CrossRef]
- Hahn, R.; Lee, H.; Kim, D.; Narayanan, S.; Berger, S.; Schmuki, P. Self-Organized Anodic TiO2-Nanotubes in Fluoride Free Electrolytes. ECS Trans. 2008, 16, 369–373. [Google Scholar]
- Lee, K.; Mazare, A.; Schmuki, P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. [Google Scholar] [CrossRef] [Green Version]
- Chiarello, G.L.; Ferri, D.; Selli, E. Effect of the CH3OH/H2O Ratio on the Mechanism of the Gas-Phase Photocatalytic Reforming of Methanol on Noble Metal-Modified TiO2. J. Catal. 2011, 280, 168–177. [Google Scholar] [CrossRef]
- Ye, Y.; Feng, Y.; Bruning, H.; Yntema, D.; Rijnaarts, H.H.M. Photocatalytic Degradation of Metoprolol by TiO2 Nanotube Arrays and UV-LED: Effects of Catalyst Properties, Operational Parameters, Commonly Present Water Constituents, and Photo-Induced Reactive Species. Appl. Catal. B Environ. 2018, 220, 171–181. [Google Scholar] [CrossRef]
- Hurum, D.C.; Agrios, A.G.; Gray, K.A.; Rajh, T.; Thurnauer, M.C. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR. J. Phys. Chem. B 2003, 107, 4545–4549. [Google Scholar] [CrossRef]
- Bickley, R.I.; Gonzalez-Carreno, T.; Lees, J.S.; Palmisano, L.; Tilley, R.J.D. A Structural Investigation of Titanium Dioxide Photocatalysts. J. Solid State Chem. 1991, 92, 178–190. [Google Scholar] [CrossRef]
- Jaihindh, D.P.; Fu, Y.P. Facile Synthesis of Deep Eutectic Solvent Assisted BiOCl/BiVO4@AgNWs Plasmonic Photocatalysts Under Visible Light Enhanced Catalytic Performance. Catal. Today 2017, 297, 246–254. [Google Scholar] [CrossRef]
- Shaabani, A.; Afshari, R. Magnetic Ugi-Functionalized Graphene Oxide Complexed with Copper Nanoparticles: Efficient Catalyst Toward Ullman Coupling Reaction in Deep Eutectic Solvents. J. Colloid Interface Sci. 2018, 510, 384–394. [Google Scholar] [CrossRef]
- Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep Eutectic Solvents (DESs) as Eco-Friendly and Sustainable Solvent/Catalyst Systems in Organic Transformations. J. Mol. Liq. 2016, 215, 345–386. [Google Scholar] [CrossRef]
- Li, G.; Liu, Z.Q.; Lu, J.; Wang, L.; Zhang, Z. Effect of Calcination Temperature on the Morphology and Surface Properties of TiO2 Nanotube Arrays. Appl. Surf. Sci. 2009, 255, 7323–7328. [Google Scholar] [CrossRef]
- Yu, J.; Wang, B. Effect of Calcination Temperature on Morphology and Photoelectrochemical Properties of Anodized Titanium Dioxide Nanotube Arrays. Appl. Catal. B Environ. 2010, 94, 295–302. [Google Scholar] [CrossRef]
- Ng, S.; Yam, F.K.; Beh, K.; Hassan, Z. Titanium Dioxide Nanotubes in Chloride Based Electrolyte: An Alternative to Fluoride Based Electrolyte. Sains Malays. 2014, 43, 947–951. [Google Scholar]
- Bervian, A.; Coser, E.; Khan, S.; Pianaro, S.A.; Aguzzoli, C.; Marcuzzo, J.S.; Baldan, M.R.; Malfatti, C.D.F. Evolution of TiO2 Nanotubular Morphology Obtained in Ethylene Glycol/Glycerol Mixture and its Photoelectrochemical Performance. Mater. Res. 2017, 20, 962–972. [Google Scholar] [CrossRef] [Green Version]
- Regonini, D.; Bowen, C.R.; Jaroenworaluck, A.; Stevens, R. A Review of Growth Mechanism, Structure and Crystallinity of Anodized TiO2 Nanotubes. Mater. Sci. Eng. R Rep. 2013, 74, 377–406. [Google Scholar] [CrossRef] [Green Version]
- Mohammadpour, F.; Moradi, M. Double-layer TiO2 Nanotube Arrays by Two-Step Anodization: Used in Back and Front-Side Illuminated Dye-Sensitized Solar Cells. Mater. Sci. Semicond. Proc. 2015, 39, 255–264. [Google Scholar] [CrossRef]
- Giorgi, L.; Dikonimos, T.; Giorgi, R.; Buonocore, F.; Faggio, G.; Messina, G.; Lisi, N. Electrochemical Synthesis of Self-Organized TiO2 Crystalline Nanotubes without Annealing. Nanotechnology 2018, 29, 095604. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, H.; Sun, Y.; Bai, B.; Zhang, Y.; Fan, Y. Anodization of Highly Ordered TiO2 Nanotube Arrays Using Orthogonal Design and Its Wettability. Int. J. Electrochem. Sci. 2016, 11, 710–723. [Google Scholar]
- Chen, S.; Xiao, Y.; Wang, Y.; Hu, Z.; Zhao, H.; Xie, W. A Facile Approach to Prepare Black TiO2 with Oxygen Vacancy for Enhancing Photocatalytic Activity. Nanomaterials 2018, 8, 245. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Peng, Y.; Lin, L.; Fan, C.M.; Gao, G.Q.; Wang, R.X.; Xu, A.W. Stable Blue TiO2−x Nanoparticles for Efficient Visible Light Photocatalysts. J. Mater. Chem. A 2014, 2, 4429–4437. [Google Scholar] [CrossRef]
- Liu, F.; Lu, L.; Xiao, P.; He, H.; Qiao, L.; Zhang, Y. Effect of Oxygen Vacancies on Photocatalytic Efficiency of TiO2 Effect of Oxygen Vacancies on Photocatalytic Efficiency of TiO2 Nanotubes Aggregation. Bull. Korean Chem. Soc. 2012, 33, 2255–2259. [Google Scholar] [CrossRef] [Green Version]
- Antony, R.; Mathews, T.; Dasgupta, A.; Sitaram, D.; Tyagi, A.K.; Raj, B. Rapid Breakdown Anodization Technique for the Synthesis of High Aspect Ratio and High Surface Area Anatase TiO2 Nanotube Powders. J. Solid State Chem. 2011, 184, 624–632. [Google Scholar] [CrossRef]
- De, M.L.; Laciste, M.T.; Tolosa, N.C.; Lu, M.C. Effect of Catalyst Calcination Temperature in the Visible Light Photocatalytic Oxidation of Gaseous Formaldehyde by Multi-Element Doped Titanium Dioxide. Environ. Sci. Pollut. Res. 2018, 25, 15216–15225. [Google Scholar]
- Park, G.C.; Seo, T.Y.; Park, C.H.; Lim, J.H.; Joo, J. Effects of Calcination Temperature on Morphology, Microstructure, and Photocatalytic Performance of TiO2 Mesocrystals. Ind. Eng. Chem. Res. 2017, 56, 8235–8240. [Google Scholar] [CrossRef]
- Bashiri, R.; Mohamed, N.M.; Kait, C.F.; Sufian, S.; Khatani, M. Enhancing Photoelectrochemical Hydrogen Production Over Cu and Ni Doped Titania Thin Film: Effect of Calcination Duration. J. Environ. Chem. Eng. 2017, 5, 3207–3214. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, B.; Chen, J. Effects of Calcination Temperature on Preparation of Boron-Doped TiO2 by Sol-Gel Method. Int. J. Photoenergy 2012, 2012, 1–8. [Google Scholar]
- Pishkar, N.; Jedi-soltanabadi, Z.; Ghoranneviss, M. Reduction in the Band Gap of Anodic TiO2 Nanotube Arrays by H2 Plasma Treatment. Results Phys. 2018, 10, 466–468. [Google Scholar] [CrossRef]
- Mioduska, J.; Zielińska-Jurek, A.; Janczarek, M.; Hupka, J. The Effect of Calcination Temperature on Structure and Photocatalytic Properties of WO3/TiO2 Nanocomposites. J. Nanomater. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Al-Hada, N.M.; Mohamed Kamari, H.; Baqer, A.; Shaari, A.; Saion, E. Thermal Calcination-Based Production of SnO2 Nanopowder: An Analysis of SnO2 Nanoparticle Characteristics and Antibacterial Activities. Nanomaterials 2018, 8, 250. [Google Scholar] [CrossRef] [Green Version]
- Dhanalakshmi, J.; Iyyapushpam, S.; Nishanthi, S.T.; Malligavathy, M.; Padiyan, D.P. Investigation of Oxygen Vacancies in Ce Coupled TiO2 Nanocomposites by Raman and PL Spectra. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 015015. [Google Scholar] [CrossRef] [Green Version]
- Ghows, N.; Entezari, M.H. Ultrasound with Low Intensity Assisted the Synthesis of Nanocrystalline TiO2 Without Calcination. Ultrason. Sonochem. 2010, 17, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.G.; Yu, H.G.; Cheng, B.; Zhao, X.J.; Yu, J.C.; Ho, W.K. The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition. J. Phys. Chem. B 2003, 107, 13871–13879. [Google Scholar] [CrossRef]
- Sang, N.X.; Huong, P.T.L.; Thy, T.T.M.; Dat, P.T.; Minh, V.C.; Tho, N.H. Crystalline Deformation and Photoluminescence of Titanium Dioxide Nanotubes During in Situ Hybridization with Graphene: An Example of the Heterogeneous Photocatalyst. Superlattices Microstruct. 2018, 121, 9–15. [Google Scholar] [CrossRef]
- Cheong, Y.L.; Yam, F.K.; Ng, S.; Hassan, Z.; Ng, S.S.; Low, I. Fabrication of titanium dioxide nanotubes in fluoride-free electrolyte via rapid breakdown anodization. J. Porous Mater. 2015, 22, 1437–1444. [Google Scholar] [CrossRef]
- Varghese, O.K.; Gong, D.; Paulose, M.; Grimes, C.A.; Dickey, E.C. Crystallization and High-Temperature Structural Stability of Titanium Oxide Nanotube Arrays. J. Mater. Res. 2003, 18, 156–165. [Google Scholar] [CrossRef]
- Low, I.M.; Albetran, H.; Prida, V.M.; Vega, V.; Manurung, P.; Ionescu, M. A Comparative Study on Crystallization Behavior, Phase Stability, and Binding Energy in Pure and Cr-doped TiO2 Nanotubes. J. Mater. Res. 2013, 28, 304–312. [Google Scholar] [CrossRef]
- Kogo, K.; Yoneyama, H.; Tamura, H. Photocatalytic oxidation of cyanide on platinized titanium dioxide. J. Phys. Chem. 1980, 84, 1705–1710. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Li, X. Preparation and Photocatalytic Performance of Anatase/Rutile Mixed-Phase TiO2 Nanotubes. Catal. Lett. 2010, 139, 129–133. [Google Scholar] [CrossRef]
- He, J.; Du, Y.; Bai, Y.; An, J.; Cai, X.; Chen, Y.; Wang, P.; Yang, X.; Feng, Q. Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Molecules 2019, 24, 2996. [Google Scholar] [CrossRef] [Green Version]
- Lair, A.; Ferronato, C.; Chovelon, J.M.; Herrmann, J.M. Naphthalene Degradation in Water by Heterogeneous Photocatalysis: An Investigation of the Influence of Inorganic Anions. J. Photochem. Photobiol. A 2008, 193, 193–203. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Z.; Shi, J.; Zhang, Y.; Hu, H.; Shangguan, W. Degradation of Indoor Gaseous Formaldehyde by Hybrid VUV and TiO2/UV processes. Sep. Purif. Technol. 2007, 54, 204–211. [Google Scholar] [CrossRef]
- Escobedo Salas, S.; Serrano Rosales, B.; de Lasa, H. Quantum Yield with Platinum Modified TiO2 Photocatalyst for Hydrogen Production. Appl. Catal. B Environ. 2013, 140–141, 523–536. [Google Scholar] [CrossRef]
- Laciste, M.T.; de Luna, M.D.G.; Tolosa, N.C.; Lu, M.C. Degradation of Gaseous Formaldehyde via Visible Light Photocatalysis using Multi-Element Doped Titania Nanoparticles. Chemosphere 2017, 182, 174–182. [Google Scholar] [CrossRef]
- Sheng, C.; Wang, C.; Wang, H.; Jin, C.; Sun, Q.; Li, S. Self-Photodegradation of Formaldehyde Under Visible-Light by Solid Wood Modified via Nanostructured Fe-Doped WO3 Accompanied with Superior Dimensional Stability. J. Hazard. 2017, 328, 127–139. [Google Scholar] [CrossRef]
Photocatalyst | Average Crystallite Size (nm) | Band Gap Calculated from PL (eV) | Valance Band Positions (eV) | |
---|---|---|---|---|
Anatase | Rutile | |||
TiO2 | 30.31 | - | 2.80 | 2.77 |
350_TiO2 | 60.50 | - | 2.76 | 2.80 |
450_TiO2 | 44.36 | 13.93 | 2.79 | 2.43 |
550_TiO2 | 33.27 | 27.85 | 2.74 | 1.84 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahrin, N.T.; Nawaz, R.; Fai Kait, C.; Lee, S.L.; Wirzal, M.D.H. Visible Light Photodegradation of Formaldehyde over TiO2 Nanotubes Synthesized via Electrochemical Anodization of Titanium Foil. Nanomaterials 2020, 10, 128. https://doi.org/10.3390/nano10010128
Sahrin NT, Nawaz R, Fai Kait C, Lee SL, Wirzal MDH. Visible Light Photodegradation of Formaldehyde over TiO2 Nanotubes Synthesized via Electrochemical Anodization of Titanium Foil. Nanomaterials. 2020; 10(1):128. https://doi.org/10.3390/nano10010128
Chicago/Turabian StyleSahrin, Nurul Tasnim, Rab Nawaz, Chong Fai Kait, Siew Ling Lee, and Mohd Dzul Hakim Wirzal. 2020. "Visible Light Photodegradation of Formaldehyde over TiO2 Nanotubes Synthesized via Electrochemical Anodization of Titanium Foil" Nanomaterials 10, no. 1: 128. https://doi.org/10.3390/nano10010128
APA StyleSahrin, N. T., Nawaz, R., Fai Kait, C., Lee, S. L., & Wirzal, M. D. H. (2020). Visible Light Photodegradation of Formaldehyde over TiO2 Nanotubes Synthesized via Electrochemical Anodization of Titanium Foil. Nanomaterials, 10(1), 128. https://doi.org/10.3390/nano10010128