Platelet-Rich Plasma Favors Proliferation of Canine Adipose-Derived Mesenchymal Stem Cells in Methacrylate-Endcapped Caprolactone Porous Scaffold Niches
Abstract
:1. Introduction
2. Results and Discussion
2.1. Canine ASC Isolation and Characterization
2.2. Influence of PRGF in cASC Growth
2.3. cASCs Exhibit Improved Adaptation to CMLA Scaffolds and Higher Proliferation When Treated with PRGF
3. Experimental Section
3.1. Adipose Tissue Processing and Derived-mesenquimal Stem Cell Culture
3.2. FACS Analysis
3.3. PRGF Preparation and ASC Viability and Proliferation
3.4. RNA Isolation and Semiquantitative RT-PCR
3.5. Giemsa Staining
3.6. CLMA Scaffolds Preparation
3.7. Morphological Characterization of CLMA Scaffolds
3.8. Immunocytochemistry
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
References
- Cui, L.; Liu, B.; Liu, G.; Zhang, W.; Cen, L.; Sun, J.; Yin, S.; Liu, W.; Cao, Y. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials 2007, 28, 5477–5486. [Google Scholar]
- De Bari, C.; Dell’accio, F. Mesenchymal stem cells in rheumatology: A regenerative approach to joint repair. Clin. Sci. (Lond) 2007, 113, 339–348. [Google Scholar] [CrossRef]
- Djouad, F.; Bouffi, C.; Ghannam, S.; Noel, D.; Jorgensen, C. Mesenchymal stem cells: Innovative therapeutic tools for rheumatic diseases. Nat. Rev. Rheumatol. 2009, 5, 392–399. [Google Scholar] [CrossRef]
- Davatchi, F.; Abdollahi, B.S.; Mohyeddin, M.; Shahram, F.; Nikbin, B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int. J. Rheum. Dis. 2011, 14, 211–215. [Google Scholar]
- Maumus, M.; Guerit, D.; Toupet, K.; Jorgensen, C.; Noel, D. Mesenchymal stem cell-based therapies in regenerative medicine: applications in rheumatology. Stem. Cell Res. Ther. 2011, 2, 14. [Google Scholar] [CrossRef]
- Vieira, N.M.; Brandalise, V.; Zucconi, E.; Jazedje, T.; Secco, M.; Nunes, V.A.; Strauss, B.E.; Vainzof, M.; Zatz, M. Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biol. Cell 2008, 100, 231–241. [Google Scholar] [CrossRef]
- Vieira, N.M.; Bueno, C.R., Jr.; Brandalise, V.; Moraes, L.V.; Zucconi, E.; Secco, M.; Suzuki, M.F.; Camargo, M.M.; Bartolini, P.; Brum, P.C.; et al. SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression. Stem. Cells 2008, 26, 2391–2398. [Google Scholar]
- Bunnell, B.A.; Flaat, M.; Gagliardi, C.; Patel, B.; Ripoll, C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods 2008, 45, 115–120. [Google Scholar] [CrossRef]
- Colter, D.C.; Class, R.; DiGirolamo, C.M.; Prockop, D.J. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc. Natl. Acad. Sci. USA 2000, 97, 3213–3218. [Google Scholar]
- Chieregato, K.; Castegnaro, S.; Madeo, D.; Astori, G.; Pegoraro, M.; Rodeghiero, F. Epidermal growth factor, basic fibroblast growth factor and platelet-derived growth factor-bb can substitute for fetal bovine serum and compete with human platelet-rich plasma in the ex vivo expansion of mesenchymal stromal cells derived from adipose tissue. Cytotherapy 2011, 13, 933–943. [Google Scholar] [CrossRef]
- Anitua, E.; Andia, I.; Ardanza, B.; Nurden, P.; Nurden, A.T. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb. Haemost. 2004, 91, 4–15. [Google Scholar]
- Kasten, P.; Vogel, J.; Beyen, I.; Weiss, S.; Niemeyer, P.; Leo, A.; Luginbuhl, R. Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: The specific surface area makes a difference. J. Biomater. Appl. 2008, 23, 169–188. [Google Scholar] [CrossRef]
- Van den Dolder, J.; Mooren, R.; Vloon, A.P.; Stoelinga, P.J.; Jansen, J.A. Platelet-rich plasma: Quantification of growth factor levels and the effect on growth and differentiation of rat bone marrow cells. Tissue Eng. 2006, 12, 3067–3073. [Google Scholar] [CrossRef]
- Pieri, F.; Lucarelli, E.; Corinaldesi, G.; Fini, M.; Aldini, N.N.; Giardino, R.; Donati, D.; Marchetti, C. Effect of mesenchymal stem cells and platelet-rich plasma on the healing of standardized bone defects in the alveolar ridge: A comparative histomorphometric study in minipigs. J. Oral Maxillofac. Surg. 2009, 67, 265–272. [Google Scholar]
- Straley, K.S.; Foo, C.W.; Heilshorn, S.C. Biomaterial design strategies for the treatment of spinal cord injuries. J. Neurotrauma 2010, 27, 1–19. [Google Scholar] [CrossRef]
- Madigan, N.N.; McMahon, S.; O'Brien, T.; Yaszemski, M.J.; Windebank, A.J. Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. Respir. Physiol. Neurobiol. 2009, 169, 183–199. [Google Scholar] [CrossRef]
- Ivirico, J.L.; Martinez, E.C.; Sanchez, M.S.; Criado, I.M.; Ribelles, J.L.; Pradas, M.M. Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 83, 266–275. [Google Scholar]
- Vertenten, G.; Lippens, E.; Girones, J.; Gorski, T.; Declercq, H.; Saunders, J.; van den Broeck, W.; Chiers, K.; Duchateau, L.; Schacht, E.; et al. Evaluation of an injectable, photopolymerizable, and three-dimensional scaffold based on methacrylate-endcapped poly(D,L-lactide-co-epsilon-caprolactone) combined with autologous mesenchymal stem cells in a goat tibial unicortical defect model. Tissue Eng. Part A 2009, 15, 1501–1511. [Google Scholar]
- Hwang, Y.J.; Choi, J.Y. Addition of mesenchymal stem cells to the scaffold of platelet-rich plasma is beneficial for the reduction of the consolidation period in mandibular distraction osteogenesis. J. Oral Maxillofac. Surg. 2010, 68, 1112–1124. [Google Scholar] [CrossRef]
- Kasten, P.; Vogel, J.; Geiger, F.; Niemeyer, P.; Luginbuhl, R.; Szalay, K. The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials 2008, 29, 3983–3992. [Google Scholar] [CrossRef]
- Cho, H.S.; Song, I.H.; Park, S.Y.; Sung, M.C.; Ahn, M.W.; Song, K.E. Individual variation in growth factor concentrations in platelet-rich plasma and its influence on human mesenchymal stem cells. Korean J. Lab Med. 2011, 31, 212–218. [Google Scholar] [CrossRef]
- Ito, K.; Yamada, Y.; Naiki, T.; Ueda, M. Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma. Clin. Oral Implants Res. 2006, 17, 579–586. [Google Scholar] [CrossRef]
- Bensaid, W.; Triffitt, J.T.; Blanchat, C.; Oudina, K.; Sedel, L.; Petite, H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 2003, 24, 2497–2502. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Dare, E.V.; Hincke, M. Fibrin: A versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev. 2008, 14, 199–215. [Google Scholar] [CrossRef]
- Zhu, H.; Schulz, J.; Schliephake, H. Human bone marrow stroma stem cell distribution in calcium carbonate scaffolds using two different seeding methods. Cli. Oral Implants Res. 2010, 21, 182–188. [Google Scholar] [CrossRef]
- Lohse, N.; Schulz, J.; Schliephake, H. Effect of fibrin on osteogenic differentiation and VEGF expression of bone marrow stromal cells in mineralised scaffolds: A three-dimensional analysis. Eur. Cell Mater. 2012, 23, 413–424. [Google Scholar]
- Marx, R.E.; Carlson, E.R.; Eichstaedt, R.M.; Schimmele, S.R.; Strauss, J.E.; Georgeff, K.R. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1998, 85, 638–646. [Google Scholar] [CrossRef]
- Yamada, Y.; Ueda, M.; Hibi, H.; Nagasaka, T. Translational research for injectable tissue-engineered bone regeneration using mesenchymal stem cells and platelet-rich plasma: from basic research to clinical case study. Cell Transplant 2004, 13, 343–355. [Google Scholar] [CrossRef]
- Pieri, F.; Lucarelli, E.; Corinaldesi, G.; Iezzi, G.; Piattelli, A.; Giardino, R.; Bassi, M.; Donati, D.; Marchetti, C. Mesenchymal stem cells and platelet-rich plasma enhance bone formation in sinus grafting: a histomorphometric study in minipigs. J. Clin. Periodontol. 2008, 35, 539–546. [Google Scholar] [CrossRef]
- Suchanek, W.; Yashima, M.; Kakihana, M.; Yoshimura, M. Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers. Biomaterials 1996, 17, 1715–1723. [Google Scholar] [CrossRef]
- Bruder, S.P.; Kraus, K.H.; Goldberg, V.M.; Kadiyala, S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J. Bone Joint Surg. Am. 1998, 80, 985–996. [Google Scholar]
- Ramay, H.R.; Zhang, M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 2004, 25, 5171–5180. [Google Scholar] [CrossRef]
- Anitua, E.; Carda, C.; Andia, I. A novel drilling procedure and subsequent bone autograft preparation: A technical note. Int. J. Oral Maxillofac. Implants 2007, 22, 138–145. [Google Scholar]
- Ivirico, J.L.; Salmeron-Sanchez, M.; Ribelles, J.L.; Pradas, M.M.; Soria, J.M.; Gomes, M.E.; Reis, R.L.; Mano, J.F. Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 91, 277–286. [Google Scholar][Green Version]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rodríguez-Jiménez, F.J.; Valdes-Sánchez, T.; Carrillo, J.M.; Rubio, M.; Monleon-Prades, M.; García-Cruz, D.M.; García, M.; Cugat, R.; Moreno-Manzano, V. Platelet-Rich Plasma Favors Proliferation of Canine Adipose-Derived Mesenchymal Stem Cells in Methacrylate-Endcapped Caprolactone Porous Scaffold Niches. J. Funct. Biomater. 2012, 3, 556-568. https://doi.org/10.3390/jfb3030556
Rodríguez-Jiménez FJ, Valdes-Sánchez T, Carrillo JM, Rubio M, Monleon-Prades M, García-Cruz DM, García M, Cugat R, Moreno-Manzano V. Platelet-Rich Plasma Favors Proliferation of Canine Adipose-Derived Mesenchymal Stem Cells in Methacrylate-Endcapped Caprolactone Porous Scaffold Niches. Journal of Functional Biomaterials. 2012; 3(3):556-568. https://doi.org/10.3390/jfb3030556
Chicago/Turabian StyleRodríguez-Jiménez, Francisco Javier, Teresa Valdes-Sánchez, José M. Carrillo, Mónica Rubio, Manuel Monleon-Prades, Dunia Mercedes García-Cruz, Montserrat García, Ramón Cugat, and Victoria Moreno-Manzano. 2012. "Platelet-Rich Plasma Favors Proliferation of Canine Adipose-Derived Mesenchymal Stem Cells in Methacrylate-Endcapped Caprolactone Porous Scaffold Niches" Journal of Functional Biomaterials 3, no. 3: 556-568. https://doi.org/10.3390/jfb3030556