Biocompatibility Evaluation of Porcine-Derived Collagen Sheets for Clinical Applications: In Vitro Cytotoxicity, In Vivo Sensitization, and Intracutaneous Reactivity Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Collagen Matrix, Testing Samples, and Designated Control Samples
2.2. Cytotoxicity Test of Mouse Fibroblast Cells
2.3. Sensitization Test of Guinea Pigs
2.4. Irritation Test of Rabbits
2.5. Acceptance Criteria of Test Grading System
3. Results
3.1. Cytotoxicity Test
3.2. Skin Sensitization Test
3.3. Irritation Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ISO | International Organization for Standardization |
MEM | Minimum essential medium |
HS | Horse serum |
PS | Penicillin streptomycin |
ATCC | American Type Culture Collection |
IAC | Institutional Animal Care and Use Committee |
RPM | Revolutions per minute |
SDS | Sodium dodecyl sulfate |
DNCB | 2,4-Dinitrochlorobenzene |
References
- Ni, H.; Liu, C.; Kong, L.; Zhai, L.; Chen, J.; Liu, Q.; Chen, Z.; Wu, M.; Chen, J.; Guo, Y.; et al. Preparation of injectable porcine skin-derived collagen and its application in delaying skin aging by promoting the adhesion and chemotaxis of skin fibroblasts. Int. J. Biol. Macromol. 2023, 253, 126718. [Google Scholar] [CrossRef]
- Xu, Q.; Torres, J.E.; Hakim, M.; Babiak, P.M.; Pal, P.; Battistoni, C.M.; Nguyen, M.; Panitch, A.; Solorio, L.; Liu, J.C. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. Mater. Sci. Eng. R Rep. 2021, 146, 100641. [Google Scholar] [CrossRef] [PubMed]
- Amirrah, I.N.; Lokanathan, Y.; Zulkiflee, I.; Wee, M.; Motta, A.; Fauzi, M.B. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022, 10, 2307. [Google Scholar] [CrossRef] [PubMed]
- Sowbhagya, R.; Muktha, H.; Ramakrishnaiah, T.N.; Surendra, A.S.; Sushma, S.M.; Tejaswini, C.; Roopini, K.; Rajashekara, S. Collagen as the extracellular matrix biomaterials in the arena of medical sciences. Tissue Cell 2024, 90, 102497. [Google Scholar] [CrossRef]
- Wang, H. A Review of the Effects of Collagen Treatment in Clinical Studies. Polymers 2021, 13, 3868. [Google Scholar] [CrossRef] [PubMed]
- Gardeazabal, L.; Izeta, A. Elastin and collagen fibres in cutaneous wound healing. Exp. Dermatol. 2024, 33, e15052. [Google Scholar] [CrossRef]
- Wosicka-Frąckowiak, H.; Poniedziałek, K.; Woźny, S.; Kuprianowicz, M.; Nyga, M.; Jadach, B.; Milanowski, B. Collagen and Its Derivatives Serving Biomedical Purposes: A Review. Polymers 2024, 16, 2668. [Google Scholar] [CrossRef]
- Jadach, B.; Mielcarek, Z.; Osmałek, T. Use of Collagen in Cosmetic Products. Curr. Issues Mol. Biol. 2024, 46, 2043–2070. [Google Scholar] [CrossRef]
- Delustro, F.; Dasch, J.; Keefe, J.; Ellingsworth, L. Immune Responses to Allogeneic and Xenogeneic Implants of Collagen and Collagen Derivatives. Clin. Orthop. Relat. Res. 1990, 260, 263–279. [Google Scholar] [CrossRef]
- Rýglová, Š.; Braun, M.; Suchý, T. Collagen and Its Modifications—Crucial Aspects with Concern to Its Processing and Analysis. Macromol. Mater. Eng. 2017, 302, 1600460. [Google Scholar] [CrossRef]
- Krane, S. Collagen Degradation. Connect. Tissue Res. 1982, 10, 51–59. [Google Scholar] [CrossRef]
- Matinong, A.M.E.; Chisti, Y.; Pickering, K.L.; Haverkamp, R.G. Collagen Extraction from Animal Skin. Biology 2022, 11, 905. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Chun, S.Y.; Lee, J.N.; Yoon, B.H.; Chung, J.-W.; Han, M.-H.; Kwon, T.G.; Ha, Y.-S.; Kim, B.S. Optimized Collagen Extraction Process to Obtain High Purity and Large Quantity of Collagen from Human Perirenal Adipose Tissue. BioMed Res. Int. 2022, 2022, 3628543. [Google Scholar] [CrossRef] [PubMed]
- Delikanlı Kıyak, B.; İnan Çınkır, N.; Çelebi, Y.; Durgut Malçok, S.; Çalışkan Koç, G.; Adal, S.; Yüksel, A.N.; Süfer, Ö.; Özkan Karabacak, A.; Ramniwas, S.; et al. Advanced technologies for the collagen extraction from food waste—A review on recent progress. Microchem. J. 2024, 201, 110404. [Google Scholar] [CrossRef]
- Harris, M.; Potgieter, J.; Ishfaq, K.; Shahzad, M. Developments for Collagen Hydrolysate in Biological, Biochemical, and Biomedical Domains: A Comprehensive Review. Materials 2021, 14, 2806. [Google Scholar] [CrossRef] [PubMed]
- Beheshtizadeh, N.; Gharibshahian, M.; Pazhouhnia, Z.; Rostami, M.; Zangi, A.R.; Maleki, R.; Azar, H.K.; Zalouli, V.; Rajavand, H.; Farzin, A.; et al. Commercialization and regulation of regenerative medicine products: Promises, advances and challenges. Biomed. Pharmacother. 2022, 153, 113431. [Google Scholar] [CrossRef] [PubMed]
- Hartmann-Fritsch, F.; Marino, D.; Reichmann, E. About ATMPs, SOPs and GMP: The Hurdles to Produce Novel Skin Grafts for Clinical Use. Transfus. Med. Hemother. 2016, 43, 344–352. [Google Scholar] [CrossRef]
- Al Hajj, W.; Salla, M.; Krayem, M.; Khaled, S.; Hassan, H.F.; El Khatib, S. Hydrolyzed collagen: Exploring its applications in the food and beverage industries and assessing its impact on human health—A comprehensive review. Heliyon 2024, 10, e36433. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.; Zhao, Y.; Zhang, N.; Zhang, Y.; Fu, Y. Deciphering the Wound-Healing Potential of Collagen Peptides and the Molecular Mechanisms: A Review. J. Agric. Food Chem. 2024, 72, 26007–26026. [Google Scholar] [CrossRef]
- Lazovic, G.; Colic, M.; Grubor, M.; Jovanovic, M. The application of collagen sheet in open wound healing. Ann. Burn. Fire Disasters 2005, 18, 151–156. [Google Scholar]
- León-López, A.; Morales-Peñaloza, A.; Martínez-Juárez, V.M.; Vargas-Torres, A.; Zeugolis, D.I.; Aguirre-Álvarez, G. Hydrolyzed Collagen-Sources and Applications. Molecules 2019, 24, 4031. [Google Scholar] [CrossRef] [PubMed]
- Alberts, A.; Bratu, A.G.; Niculescu, A.-G.; Grumezescu, A.M. Collagen-Based Wound Dressings: Innovations, Mechanisms, and Clinical Applications. Gels 2025, 11, 271. [Google Scholar] [CrossRef]
- Cen, L.; Liu, W.; Cui, L.; Zhang, W.; Cao, Y. Collagen Tissue Engineering: Development of Novel Biomaterials and Applications. Pediatr. Res. 2008, 63, 492–496. [Google Scholar] [CrossRef]
- Janssens-Böcker, C.; Wiesweg, K.; Doberenz, C. Native collagen sheet mask improves skin health and appearance: A comprehensive clinical evaluation. J. Cosmet. Dermatol. 2024, 23, 1685–1702. [Google Scholar] [CrossRef]
- Kanďárová, H.; Pôbiš, P. The “Big Three” in biocompatibility testing of medical devices: Implementation of alternatives to animal experimentation-are we there yet? Front. Toxicol. 2023, 5, 1337468. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009; Volume 3, pp. 1–34.
- ISO 10993-10:2021; Biological Evaluation of Medical Devices—Part 10: Tests for Skin Sensitization. International Organization for Standardization: Geneva, Switzerland, 2021; Volume 4, pp. 1–48.
- ISO 10993-23:2021; Biological Evaluation of Medical Devices—Part 23: Tests for Irritation. International Organization for Standardization: Geneva, Switzerland, 2021; Volume 1, pp. 1–60.
- Frisch, E.; Clavier, L.; Belhamdi, A.; Vrana, N.E.; Lavalle, P.; Frisch, B.; Heurtault, B.; Gribova, V. Preclinical in vitro evaluation of implantable materials: Conventional approaches, new models and future directions. Front. Bioeng. Biotechnol. 2023, 11, 1193204. [Google Scholar] [CrossRef]
- Iqbal, H.M.N.; Keshavarz, T. 13—The challenge of biocompatibility evaluation of biocomposites. In Biomedical Composites, 2nd ed.; Ambrosio, L., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 303–334. [Google Scholar]
- Koo, T.H.; Lee, J.K.; Grogan, S.P.; Ra, H.J.; D’Lima, D.D. Biocompatibility Study of Purified and Low-Temperature-Sterilized Injectable Collagen for Soft Tissue Repair: Intramuscular Implantation in Rats. Gels 2024, 10, 619. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.I.; Koo, T.H.; Chen, P.; D’Lima, D.D. Subcutaneous toxicity of a dual ionically cross-linked atelocollagen and sodium hyaluronate gel: Rat in vivo study for biological safety evaluation of the injectable hydrogel. Toxicol. Rep. 2021, 8, 1651–1656. [Google Scholar] [CrossRef]
- ISO 10993-12:2021; Biological Evaluation of Medical Devices—Part 12: Sample Preparation and Reference Materials. International Organization for Standardization: Geneva, Switzerland, 2021; Volume 5, pp. 1–21.
- Strober, W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2015, 111, A3.B.1–A3.B.3. [Google Scholar] [CrossRef] [PubMed]
- De Jong, W.H.; Carraway, J.W.; Geertsma, R.E. 7—In vivo and in vitro testing for the biological safety evaluation of biomaterials and medical devices. In Biocompatibility and Performance of Medical Devices; Boutrand, J.-P., Ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 120–158. [Google Scholar]
- Barajaa, M.A.; Otsuka, T.; Ghosh, D.; Kan, H.-M.; Laurencin, C.T. Development of porcine skeletal muscle extracellular matrix–derived hydrogels with improved properties and low immunogenicity. Proc. Natl. Acad. Sci. USA 2024, 121, e2322822121. [Google Scholar] [CrossRef]
- Record Ritchie, R.D.; Salmon, S.L.; Hiles, M.C.; Metzger, D.W. Lack of immunogenicity of xenogeneic DNA from porcine biomaterials. Surg. Open. Sci. 2022, 10, 83–90. [Google Scholar] [CrossRef]
- Tai, H.C.; Liao, Y.H.; Chang, Y.C.; Yang, C.Y.; Horng, S.Y.; Kuo, Y.S.; Sheen, Y.S.; Huang, Y.H.; Hui, R.C.; Chen, T.M.; et al. An Evaluation of Skin and Immunological Responses after Using a Novel Cross-Linked Porcine-Based Dermal Injectable Collagen with Lidocaine for Nasolabial Fold Correction. J. Clin. Med. 2024, 13, 5241. [Google Scholar] [CrossRef]
- Wong, M.L.; Griffiths, L.G. Immunogenicity in xenogeneic scaffold generation: Antigen removal vs. decellularization. Acta Biomater 2014, 10, 1806–1816. [Google Scholar] [CrossRef] [PubMed]
- Elango, J.; Hou, C.; Bao, B.; Wang, S.; Maté Sánchez de Val, J.E.; Wenhui, W. The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers 2022, 14, 876. [Google Scholar] [CrossRef]
- Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef]
- Nishi, N.; Matsushita, O.; Yuube, K.; Miyanaka, H.; Okabe, A.; Wada, F. Collagen-binding growth factors: Production and characterization of functional fusion proteins having a collagen-binding domain. Proc. Natl. Acad. Sci. USA 1998, 95, 7018–7023. [Google Scholar] [CrossRef]
- Khan, R.; Khan, M.H. Use of collagen as a biomaterial: An update. J. Indian Soc. Periodontol. 2013, 17, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, Z.; Zou, Y.; Lu, G.; Ronca, A.; D’Amora, U.; Liang, J.; Fan, Y.; Zhang, X.; Sun, Y. Advanced application of collagen-based biomaterials in tissue repair and restoration. J. Leather Sci. Eng. 2022, 4, 30. [Google Scholar] [CrossRef]
- Jablonská, E.; Kubásek, J.; Vojtěch, D.; Ruml, T.; Lipov, J. Test conditions can significantly affect the results of in vitro cytotoxicity testing of degradable metallic biomaterials. Sci. Rep. 2021, 11, 6628. [Google Scholar] [CrossRef]
- Podgórski, R.; Wojasiński, M.; Ciach, T. Nanofibrous materials affect the reaction of cytotoxicity assays. Sci. Rep. 2022, 12, 9047. [Google Scholar] [CrossRef] [PubMed]
- Gruber, S.; Nickel, A. Toxic or not toxic? The specifications of the standard ISO 10993-5 are not explicit enough to yield comparable results in the cytotoxicity assessment of an identical medical device. Front. Med. Technol. 2023, 5, 1195529. [Google Scholar] [CrossRef] [PubMed]
- Dusinska, M.; Rundén-Pran, E.; Carreira, S.C.; Saunders, M. Chapter 4—Critical Evaluation of Toxicity Tests. In Adverse Effects of Engineered Nanomaterials; Fadeel, B., Pietroiusti, A., Shvedova, A.A., Eds.; Academic Press: Boston, MA, USA, 2012; pp. 63–83. [Google Scholar]
- Mateu-Sanz, M.; Fuenteslópez, C.V.; Uribe-Gomez, J.; Haugen, H.J.; Pandit, A.; Ginebra, M.-P.; Hakimi, O.; Krallinger, M.; Samara, A. Redefining biomaterial biocompatibility: Challenges for artificial intelligence and text mining. Trends Biotechnol. 2024, 42, 402–417. [Google Scholar] [CrossRef] [PubMed]
- Giardino, R.; Fini, M.; Aldini, N.N.; Parrilli, A. 15—Testing the in vivo biocompatibility of biocomposites. In Biomedical Composites, 2nd ed.; Ambrosio, L., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 357–374. [Google Scholar]
- Davison-Kotler, E.; Marshall, W.S.; García-Gareta, E. Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering 2019, 6, 56. [Google Scholar] [CrossRef] [PubMed]
Graph | Level of Reactivity | Description of Cell Culture Conditions |
---|---|---|
0 | No Reaction | Cells maintain normal morphology with occasional intracellular granules; no visible damage or inhibition of cell proliferation |
1 | Minimal Reaction | Up to 20% of cells appear rounded or loosely attached with minor morphological changes or granule loss; few lysed cells; cell growth largely unaffected. |
2 | Mild Reaction | Up to 50% of cells exhibit rounding, granule loss, or early signs of detachment; minimal cell death; moderate reduction in cell growth may be observed. |
3 | Moderate Reaction | Between 50–70% of the culture displays cell rounding, detachment, or lysis; significant inhibition of cell proliferation, through some intact cell layers remain. |
4 | Strong Reaction | Most or all of the cell layer is disrupted or destroyed; widespread cell death and major loss of cell integrity. |
Group | Animal No. | Test Materials | Dose (mL) | Injection Site |
---|---|---|---|---|
G1 | 5 | Sterile saline: * FCA (1:1) Sterile saline Sterile saline: ** FCA emulsion (1:1) | 0.1 0.1 0.1 | (1) (2) (3) |
G2 | 10 | Sterile saline: * FCA (1:1) Sterile saline extract Sterile saline extract: ** FCA emulsion (1:1) | 0.1 0.1 0.1 | (1) (2) (3) |
G3 | 5 | Cottonseed oil: * FCA (1:1) Cottonseed oil Cottonseed oil: ** FCA emulsion (1:1) | 0.1 0.1 0.1 | (1) (2) (3) |
G4 | 10 | Cottonseed oil: * FCA (1:1) Cottonseed oil extract Cottonseed oil extract: ** FCA emulsion (1:1) | 0.1 0.1 0.1 | (1) (2) (3) |
Observed Reaction | Score |
---|---|
No visible skin change | 0 |
Slight redness in localized areas | 1 |
Noticeable, widespread redness | 2 |
Pronounced redness and/or swelling | 3 |
Reaction Type | Score | Description |
---|---|---|
Skin Redness (Erythema) | ||
None | 0 | No observable redness |
Slight | 1 | Faint or minimal redness, just detectable |
Clear | 2 | Noticeable redness with clear borders |
Marked | 3 | Pronounced redness over the area |
Severe | 4 | Deep red coloration or formation of scab masking redness |
Swelling (Edema) | ||
None | 0 | No visible swelling |
Slight | 1 | Barely noticeable swelling |
Clear | 2 | Obvious swelling within the treated area |
Moderate | 3 | Raised skin, approximately 1 mm above surface |
Severe | 4 | Pronounced swelling exceeding 1 mm and spreading beyond treated area |
Viable Cell Count | Test | Media Control | Negative Control | Positive Control |
---|---|---|---|---|
1 | 7.9 × 105 | 8.3 × 105 | 8.1 × 105 | 0 |
2 | 8.2 × 105 | 8.9 × 105 | 8.3 × 105 | 0 |
3 | 7.8 × 105 | 8.7 × 105 | 8.4 × 105 | 0 |
Average | 8.0 × 105 | 8.7 × 105 | 8.3 × 105 | 0 |
RCC (%) | 92.0 | 100.0 | 95.4 | 0.0 |
Grade | 1 | 0 | 0 | 4 |
Graph 24. | 24 h | 48 h | ||||
---|---|---|---|---|---|---|
Negative Control | Positive Control | Test | Negative Control | Positive Control | Test | |
Average | 0.00 | 1.40 | 0.00 | 0.00 | 1.70 | 0.00 |
SD | 0.00 | 0.52 | 0.00 | 0.00 | 0.48 | 0.00 |
Animals | Saline Extracts | Cottonseed Oil Extracts | ||
---|---|---|---|---|
Test | Control | Test | Control | |
1 | 1 | 0 | 0.67 | 0.67 |
2 | 0.33 | 0 | 0.33 | 0.33 |
3 | 1 | 0 | 0.67 | 0.67 |
Average * | 0.78 | 0.00 | 0.56 | 0.56 |
Score difference ** | 0.78 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koo, T.-H.; Lee, J.K.; Grogan, S.P.; D'Lima, D.D. Biocompatibility Evaluation of Porcine-Derived Collagen Sheets for Clinical Applications: In Vitro Cytotoxicity, In Vivo Sensitization, and Intracutaneous Reactivity Studies. J. Funct. Biomater. 2025, 16, 347. https://doi.org/10.3390/jfb16090347
Koo T-H, Lee JK, Grogan SP, D'Lima DD. Biocompatibility Evaluation of Porcine-Derived Collagen Sheets for Clinical Applications: In Vitro Cytotoxicity, In Vivo Sensitization, and Intracutaneous Reactivity Studies. Journal of Functional Biomaterials. 2025; 16(9):347. https://doi.org/10.3390/jfb16090347
Chicago/Turabian StyleKoo, Tae-Hoon, Jason K. Lee, Shawn P. Grogan, and Darryl D. D'Lima. 2025. "Biocompatibility Evaluation of Porcine-Derived Collagen Sheets for Clinical Applications: In Vitro Cytotoxicity, In Vivo Sensitization, and Intracutaneous Reactivity Studies" Journal of Functional Biomaterials 16, no. 9: 347. https://doi.org/10.3390/jfb16090347
APA StyleKoo, T.-H., Lee, J. K., Grogan, S. P., & D'Lima, D. D. (2025). Biocompatibility Evaluation of Porcine-Derived Collagen Sheets for Clinical Applications: In Vitro Cytotoxicity, In Vivo Sensitization, and Intracutaneous Reactivity Studies. Journal of Functional Biomaterials, 16(9), 347. https://doi.org/10.3390/jfb16090347