Fracture Resistance of 3-Unit Zirconia Fixed Dental Prostheses Differing in Wall Thickness Fabricated by Either 3D-Printing or Milling
Abstract
1. Introduction
2. Materials and Methods
2.1. Individual Calibration of 3D-Printing Parameters
- i: number of the respective cylindrical opening;
- ni: number of points describing the contour line of the ith cylindrical opening at a given height z;
- (xc,i, yc,i): center point coordinates of an ellipse fitted to the cylindrical opening i;
- ai: first half-axis of an ellipse fitted to the ith opening;
- ky: half-axis ratio (constant for all cylindrical openings).
2.2. Study Design and Sample Fabrication
2.3. Artificial Aging and Fracture Load Tests
2.4. Fractography
2.5. Statistical Evaluation
3. Results
3.1. Individual Calibration
3.2. Artificial Aging and Fracure Load Testing
3.3. Fractograpgy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miyazaki, T.; Nakamura, T.; Matsumura, H.; Ban, S.; Kobayashi, T. Current status of zirconia restoration. J. Prosthodont. Res. 2013, 57, 236–261. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Suliman, A.A.; Abdulmajeed, A.A.; Zhang, Y. Zirconia restoration types, properties, tooth preparation design, and bonding. A narrative review. J. Esthet. Restor. Dent. 2024, 36, 78–84. [Google Scholar] [CrossRef]
- Belli, R.; Frankenberger, R.; Appelt, A.; Schmitt, J.; Baratieri, L.N.; Greil, P.; Lohbauer, U. Thermal-induced residual stresses affect the lifetime of zirconia-veneer crowns. Dent. Mater. 2013, 29, 181–190. [Google Scholar] [CrossRef]
- Matta, R.E.; Eitner, S.; Stelzer, S.P.; Reich, S.; Wichmann, M.; Berger, L. Ten-year clinical performance of zirconia posterior fixed partial dentures. J. Oral Rehabil. 2022, 49, 71–80. [Google Scholar] [CrossRef]
- Lehmann, K.M.; Weyhrauch, M.; Bjelopavlovic, M.; Scheller, H.; Staedt, H.; Ottl, P.; Kaemmerer, P.W.; Wentaschek, S. Marginal and Internal Precision of Zirconia Four-Unit Fixed Partial Denture Frameworks Produced Using Four Milling Systems. Materials 2021, 14, 2663. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, M.M.; Souza, L.V.S.; Magno, M.B.; Song, X.; Maia, L.C.; Cury, A.; Zhang, Y. Is Additive Manufacturing of Dental Zirconia Comparable to Subtractive Methods When Considering Printing Orientation and Layer Thickness? A Systematic Review and Meta-Analysis. J. Esthet. Restor. Dent. 2025, 10, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Zhang, Y.; Jin, C.; Zhang, Q.; Lu, J.; Liu, Z.; Wang, Q.; Zhang, X.; Ma, J. 3D printed zirconia used as dental materials: A critical review. J. Biol. Eng. 2023, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Bergler, M.; Korostoff, J.; Torrecillas-Martinez, L.; Mante, F.K. Ceramic Printing—Comparative Study of the Flexural Strength of 3D Printed and Milled Zirconia. Int. J. Prosthodont. 2022, 35, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Zenthofer, A.; Ilani, A.; Schmitt, C.; Rammelsberg, P.; Hetzler, S.; Rues, S. Biaxial flexural strength of 3D-printed 3Y-TZP zirconia using a novel ceramic printer. Clin. Oral Investig. 2024, 28, 145. [Google Scholar] [CrossRef]
- Kim, M.S.; Hong, M.H.; Min, B.K.; Kim, Y.K.; Shin, H.J.; Kwon, T.Y. Microstructure, Flexural Strength, and Fracture Toughness Comparison between CAD/CAM Milled and 3D-Printed Zirconia Ceramics. Appl. Sci. 2022, 12, 9088. [Google Scholar] [CrossRef]
- ISO 6872:2024; Dentistry—Ceramic Materials. ISO: Geneva, Switzerland, 2024.
- Branco, A.C.; Silva, R.; Santos, T.; Jorge, H.; Rodrigues, A.R.; Fernandes, R.; Bandarra, S.; Barahona, I.; Matos, A.P.A.; Lorenz, K.; et al. Suitability of 3D printed pieces of nanocrystalline zirconia for dental applications. Dent. Mater. 2020, 36, 442–455. [Google Scholar] [CrossRef]
- Saâdaoui, M.; Khaldoun, F.; Adrien, J.; Reveron, H.; Chevalier, J. X-ray tomography of additive-manufactured zirconia: Processing defects—Strength relations. J. Eur. Ceram. Soc. 2020, 40, 3200–3207. [Google Scholar] [CrossRef]
- Abualsaud, R.; Abussaud, M.; Assudmi, Y.; Aljoaib, G.; Khaled, A.; Alalawi, H.; Akhtar, S.; Matin, A.; Gad, M.M. Physiomechanical and Surface Characteristics of 3D-Printed Zirconia: An In Vitro Study. Materials 2022, 15, 6988. [Google Scholar] [CrossRef]
- Zhang, F.; Spies, B.C.; Willems, E.; Inokoshi, M.; Wesemann, C.; Cokic, S.M.; Hache, B.; Kohal, R.J.; Altmann, B.; Vleugels, J.; et al. 3D printed zirconia dental implants with integrated directional surface pores combine mechanical strength with favorable osteoblast response. Acta Biomater. 2022, 150, 427–441. [Google Scholar] [CrossRef]
- Refaie, A.; Bourauel, C.; Fouda, A.M.; Keilig, L.; Singer, L. The effect of cyclic loading on the fracture resistance of 3D-printed and CAD/CAM milled zirconia crowns-an in vitro study. Clin. Oral Investig. 2023, 27, 6125–6133. [Google Scholar] [CrossRef]
- Rues, S.; Zehender, N.; Zenthöfer, A.; Bömicke, W.; Herpel, C.; Ilani, A.; Erber, R.; Roser, C.; Lux, C.J.; Rammelsberg, P.; et al. Fit of anterior restorations made of 3D-printed and milled zirconia: An in-vitro study. J. Dent. 2023, 130, 104415. [Google Scholar] [CrossRef]
- Luchtenborg, J.; Willems, E.; Zhang, F.; Wesemann, C.; Weiss, F.; Nold, J.; Sun, J.; Sandra, F.; Bai, J.; Reveron, H.; et al. Accuracy of additively manufactured zirconia four-unit fixed dental prostheses fabricated by stereolithography, digital light processing and material jetting compared with subtractive manufacturing. Dent. Mater. 2022, 38, 1459–1469. [Google Scholar] [CrossRef]
- Dagistan, S.; Toksoy, D.; Onoral, O.; Diken Turksayar, A.A. Effect of different additive manufacturing technologies on the fracture load of 3-unit monolithic zirconia fixed partial dentures: In vitro mechanical evaluation and energy-dispersive spectroscopy analysis. J. Prosthet. Dent. 2025, 134, 225.e1–225.e9. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, S.K.; Koak, J.Y.; Park, J.M. Effects of a hollow pontic design with various wall thicknesses on the axial internal fit and failure load of 3D printed three-unit resin prostheses. J. Prosthet. Dent. 2024, 132, 1287.e1–1287.e10. [Google Scholar] [CrossRef]
- Erdinc, G.; Bulbul, M.; Ozcan, M. Fracture strength and energy-dispersive spectroscopy analysis of 3-unit fixed partial dentures fabricated from different monolithic zirconia materials. J. Prosthet. Dent. 2023, 129, 938.e1–938.e7. [Google Scholar] [CrossRef]
- Corbani, K.; Hardan, L.; Skienhe, H.; Ozcan, M.; Alharbi, N.; Salameh, Z. Effect of material thickness on the fracture resistance and failure pattern of 3D-printed composite crowns. Int. J. Comput. Dent. 2020, 23, 225–233. [Google Scholar]
- Zenthofer, A.; Fien, D.; Rossipal, J.; Ilani, A.; Schmitt, C.; Hetzler, S.; Rammelsberg, P.; Rues, S. Fracture Resistance of 3D-Printed Occlusal Veneers Made from 3Y-TZP Zirconia. Materials 2024, 17, 2122. [Google Scholar] [CrossRef]
- Zenthofer, A.; Schwindling, F.S.; Schmitt, C.; Ilani, A.; Zehender, N.; Rammelsberg, P.; Rues, S. Strength and reliability of zirconia fabricated by additive manufacturing technology. Dent. Mater. 2022, 38, 1565–1574. [Google Scholar] [CrossRef]
- Sugiki, T.; Suzuki, S.; Seto, M.; Ueda, K. Effect of metal elements in coloring liquids used in the infiltration method on the physical properties of zirconia. Dent. Mater. 2024, 40, 2114–2121. [Google Scholar] [CrossRef]
- Amaral, M.; Villefort, R.F.; Melo, R.M.; Pereira, G.K.R.; Zhang, Y.; Valandro, L.F.; Bottino, M.A. Fatigue limit of monolithic Y-TZP three-unit-fixed dental prostheses: Effect of grinding at the gingival zone of the connector. J. Mech. Behav. Biomed. Mater. 2017, 72, 159–162. [Google Scholar] [CrossRef]
- Bhandari, S.; Manière, C.; Sedona, F.; De Bona, E.; Sglavo, V.M.; Colombo, P.; Fambri, L.; Biesuz, M.; Franchin, G. Ultra-rapid debinding and sintering of additively manufactured ceramics by ultrafast high-temperature sintering. J. Eur. Ceram. Soc. 2024, 44, 328–340. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Xiang, Y.; Li, M.; Shen, D.; Zhang, S.; Zhou, X.; An, J.; Shi, Y.; Fu, B. The effects of optimized microstructured surfaces on bond strength and durability of NPJ-printed zirconia. Dent. Mater. 2024, 40, 1991–1999. [Google Scholar] [CrossRef]
- Dai, K.; Wu, J.; Zhao, Z.; Yu, H.; Zhao, Z.; Gao, B. Surface Texture Designs to Improve the Core-Veneer Bond Strength of Zirconia Restorations Using Digital Light Processing. Materials 2023, 16, 6072. [Google Scholar] [CrossRef]
- Guth, J.F.; Keul, C.; Liebermann, A.; Schweiger, J.; Edelhoff, D.; Schubert, O. Three-unit posterior monolithic fixed dental prostheses made from high-translucent shade-graded zirconia: 3-Year results from a prospective clinical pilot study. Clin. Oral Investig. 2024, 29, 17. [Google Scholar] [CrossRef]
- Hjerppe, J.; Ioannidis, A.; Valdes, A.M.; Thoma, D.S.; Jung, R.E.; Palma, C.M.B.; Muhlemann, S. Posterior monolithic 3-unit zirconia fixed dental prostheses: One-year interim results of a multicenter randomized clinical trial. J. Dent. 2025, 160, 105900. [Google Scholar] [CrossRef]
Start Temperature [°C] | End Temperature [°C] | Time [hh:mm] |
---|---|---|
0 | 150 | 00:15 |
150 | 200 | 00:10 |
200 | 320 | 20:00 |
320 | 320 | 01:00 |
329 | 490 | 05:40 |
490 | 490 | 01:00 |
490 | 1100 | 01:01 |
1100 | 100 | 01:00 |
Total time | 30:06 |
Start Temperature [°C] | End Temperature [°C] | Time [hh:mm] |
---|---|---|
0 | 1200 | 02:00 |
1200 | 1200 | 01:00 |
1200 | 1500 | 01:00 |
1500 | 1500 | 02:00 |
1500 | 0 | 01:20 |
Total time | 07:20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rues, S.; Crocoll, J.; Hetzler, S.; Rossipal, J.; Rammelsberg, P.; Zenthöfer, A. Fracture Resistance of 3-Unit Zirconia Fixed Dental Prostheses Differing in Wall Thickness Fabricated by Either 3D-Printing or Milling. J. Funct. Biomater. 2025, 16, 330. https://doi.org/10.3390/jfb16090330
Rues S, Crocoll J, Hetzler S, Rossipal J, Rammelsberg P, Zenthöfer A. Fracture Resistance of 3-Unit Zirconia Fixed Dental Prostheses Differing in Wall Thickness Fabricated by Either 3D-Printing or Milling. Journal of Functional Biomaterials. 2025; 16(9):330. https://doi.org/10.3390/jfb16090330
Chicago/Turabian StyleRues, Stefan, Jannis Crocoll, Sebastian Hetzler, Johannes Rossipal, Peter Rammelsberg, and Andreas Zenthöfer. 2025. "Fracture Resistance of 3-Unit Zirconia Fixed Dental Prostheses Differing in Wall Thickness Fabricated by Either 3D-Printing or Milling" Journal of Functional Biomaterials 16, no. 9: 330. https://doi.org/10.3390/jfb16090330
APA StyleRues, S., Crocoll, J., Hetzler, S., Rossipal, J., Rammelsberg, P., & Zenthöfer, A. (2025). Fracture Resistance of 3-Unit Zirconia Fixed Dental Prostheses Differing in Wall Thickness Fabricated by Either 3D-Printing or Milling. Journal of Functional Biomaterials, 16(9), 330. https://doi.org/10.3390/jfb16090330