A Tea Polyphenol-Infused Sprayable Thermosensitive Liposomal Hydrogel for Enhanced Anti-Inflammatory and Antibacterial Psoriasis Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physicochemical Characterization
2.2.1. Preparation of LA-Lipo and TP@LA-Lipo
2.2.2. Characterization of TP@LA-Lipo
2.2.3. Efficiency of LA Loading
2.2.4. Determination of Percent Drug Encapsulation Efficiency
2.2.5. Preparation of TP@LA-Lipo Gel
2.2.6. Sprayability
2.2.7. In Vitro Hydrogel Erosion
2.2.8. Rheological Properties
2.3. In Vitro Biopharmaceutical Studies
2.3.1. Microbiological Environment of the Psoriatic Skin
2.3.2. Cellular Uptake Test
2.3.3. RT-qPCR Assay
2.3.4. In Vitro Antibacterial Assays
2.3.5. In Vitro Antibiofilm Assay
2.3.6. Zeta Potential Analysis of Bacterial Membrane Integrity
2.3.7. Skin Permeation of TP@LA-Lipo In Vivo
2.4. Preclinical In Vivo Studies
2.4.1. Animals and Psoriasiform Model
2.4.2. Psoriasis Area and Severity Index (PASI)
2.4.3. Changes of Spleen in Mice
2.4.4. Histological Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. The Synthesis and Characterization of TP@LA-Lipo
3.2. In Vitro Analysis of TP@LA-Lipo’s Antibacterial Activity
3.3. Anti-Inflammatory Effects of TP@LA-Lipo on Macrophages
3.4. Characterization of Sprayable Hydrogels Loaded with TP@LA-Lipo
3.5. Evaluating Drug Penetration of TP@LA-Lipo Gel in Psoriatic Skin
3.6. Therapeutic Efficacy of TP@LA-Lipo Gel in IMQ-Induced Psoriasis Mouse Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, Y.; Chang, C.; Lu, Q. The inflammatory response in psoriasis: A comprehensive review. Clin. Rev. Allergy Immunol. 2016, 50, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lu, J.; Liu, J.; Wu, J.; Zhang, X.; Meng, Y.; Wu, X.; Tai, Z.; Zhu, Q.; Chen, Z. Immune cells in the epithelial immune microenvironment of psoriasis: Emerging therapeutic targets. Front. Immunol. 2024, 14, 1340677. [Google Scholar]
- Kapoor, B.; Gulati, M.; Rani, P.; Gupta, R. Psoriasis: Interplay between dysbiosis and host immune system. Autoimmun. Rev. 2022, 21, 103169. [Google Scholar] [PubMed]
- Liu, S.; He, M.; Jiang, J.; Duan, X.; Chai, B.; Zhang, J.; Tao, Q.; Chen, H. Triggers for the onset and recurrence of psoriasis: A review and update. Cell Commun. Signal. 2024, 22, 108. [Google Scholar]
- De Pessemier, B.; Grine, L.; Debaere, M.; Maes, A.; Paetzold, B.; Callewaert, C. Gut–skin axis: Current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorganisms 2021, 9, 353. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J. Agric. Food Chem. 2019, 67, 1029–1043. [Google Scholar]
- Yin, Z.; Zheng, T.; Ho, C.-T.; Huang, Q.; Wu, Q.; Zhang, M. Improving the stability and bioavailability of tea polyphenols by encapsulations: A review. Food Sci. Hum. Wellness 2022, 11, 537–556. [Google Scholar]
- Muniyan, R.; Gurunathan, J. Lauric acid and myristic acid from Allium sativum inhibit the growth of Mycobacterium tuberculosis H37Ra: In silico analysis reveals possible binding to protein kinase B. Pharm. Biol. 2016, 54, 2814–2821. [Google Scholar]
- Wei, R.; Li, G.; Huang, Y.; Mi, L.; Wu, J.; Huang, H.; Yin, N.; Chen, Y.; Yang, Q.; Zhang, W. Photo-curing hyaluronic acid-Janus antibacterial packs as O2 generator precisely modulate the infectious microenvironment for antibiotic-free periodontal therapy. Mater. Today Bio 2025, 30, 101405. [Google Scholar]
- Kumar, P.; Lee, J.-H.; Beyenal, H.; Lee, J. Fatty acids as antibiofilm and antivirulence agents. Trends Microbiol. 2020, 28, 753–768. [Google Scholar]
- Bharathi, D.; Lee, J.-H.; Lee, J. Enhancement of antimicrobial and antibiofilm activities of liposomal fatty acids. Colloids Surf. B Biointerfaces 2024, 234, 113698. [Google Scholar]
- Ferrara, F.; Verduci, C.; Laconi, E.; Mangione, A.; Dondi, C.; Del Vecchio, M.; Carlevatti, V.; Zovi, A.; Capuozzo, M.; Langella, R. Current therapeutic overview and future perspectives regarding the treatment of psoriasis. Int. Immunopharmacol. 2024, 143, 113388. [Google Scholar] [PubMed]
- Zou, L.-Q.; Liu, W.; Liu, W.-L.; Liang, R.-H.; Li, T.; Liu, C.-M.; Cao, Y.-L.; Niu, J.; Liu, Z. Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. J. Agric. Food Chem. 2014, 62, 934–941. [Google Scholar]
- Song, F.; Yang, G.; Wang, Y.; Tian, S. Effect of phospholipids on membrane characteristics and storage stability of liposomes. Innov. Food Sci. Emerg. Technol. 2022, 81, 103155. [Google Scholar]
- Foreman-Ortiz, I.U.; Ma, T.F.; Hoover, B.M.; Wu, M.; Murphy, C.J.; Murphy, R.M.; Pedersen, J.A. Nanoparticle tracking analysis and statistical mixture distribution analysis to quantify nanoparticle–vesicle binding. J. Colloid Interface Sci. 2022, 615, 50–58. [Google Scholar]
- Lin, C.-L.; Li, Y.-L.; Chen, Y.-W.; Kuo, C.-H.; Tu, T.-Y.; Liu, Y.-F.; Tsai, J.-C.; Shyong, Y.-J. Amphiphilic NLC-Gel formulation loaded with Sebacoyl dinalbuphine ester and Nalbuphine for localized postoperative pain management. Int. J. Pharm. 2024, 659, 124295. [Google Scholar] [CrossRef]
- Hirun, N.; Kraisit, P.; Tantishaiyakul, V. Thermosensitive polymer blend composed of poloxamer 407, poloxamer 188 and polycarbophil for the use as mucoadhesive in situ gel. Polymers 2022, 14, 1836. [Google Scholar] [CrossRef]
- Ni, S.; Zhang, K.; Zhao, X.; Wu, S.; Yan, M.; Sun, D.; Zhu, L.; Wu, W. Phenylboronic acid functionalized dextran loading curcumin as nano-therapeutics for promoting the bacteria-infected diabetic wound healing. Int. J. Biol. Macromol. 2024, 273, 133062. [Google Scholar]
- Nie, X.; Fu, L.; Guo, A.-P.; Zhang, L.; Huo, S.-H.; Zhang, W.; Chen, Z.-L.; Zhan, X.; Tang, L.-Q.; Wang, F. Fe-based nanozyme with photothermal activity prepared from polymerization-induced self-assembly assays boosts the recovery of bacteria-infected wounds. Acta Biomater. 2024, 190, 488–500. [Google Scholar] [CrossRef]
- Kaplan, Ö.; Truszkowska, M.; Kali, G.; Knoll, P.; Massani, M.B.; Braun, D.E.; Bernkop-Schnürch, A. Thiolated α-cyclodextrin: The likely smallest drug carrier providing enhanced cellular uptake and endosomal escape. Carbohydr. Polym. 2023, 316, 121070. [Google Scholar]
- Liu, J.; Li, X.; Liu, L.; Bai, Q.; Sui, N.; Zhu, Z. Self-assembled ultrasmall silver nanoclusters on liposome for topical antimicrobial delivery. Colloids Surf. B Biointerfaces 2021, 200, 111618. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Xu, D.; Wang, L.; Kong, L.; Liu, Q.; Li, Q.; Zhang, X.; Su, Z.; Hu, X.; Zhu, W. Biofilm Microenvironment-Responsive Self-Assembly Nanoreactors for All-Stage Biofilm Associated Infection through Bacterial Cuproptosis-like Death and Macrophage Re-Rousing. Adv. Mater. 2023, 35, 2303432. [Google Scholar]
- Guo, R.; Li, K.; Tian, B.; Wang, C.; Chen, X.; Jiang, X.; He, H.; Hong, W. Elaboration on the architecture of pH-sensitive surface charge-adaptive micelles with enhanced penetration and bactericidal activity in biofilms. J. Nanobiotechnol. 2021, 19, 232. [Google Scholar] [CrossRef]
- Rani, N.N.I.M.; Chen, X.Y.; Al-Zubaidi, Z.M.; Azhari, H.; Khaitir, T.M.N.; Ng, P.Y.; Buang, F.; Tan, G.C.; Wong, Y.P.; Said, M.M.; et al. Surface-engineered liposomes for dual-drug delivery targeting strategy against methicillin-resistant Staphylococcus aureus (MRSA). Asian J. Pharm. Sci. 2022, 17, 102–119. [Google Scholar] [CrossRef]
- Xu, J.; Chen, H.; Chu, Z.; Li, Z.; Chen, B.; Sun, J.; Lai, W.; Ma, Y.; He, Y.; Qian, H. A multifunctional composite hydrogel as an intrinsic and extrinsic coregulator for enhanced therapeutic efficacy for psoriasis. J. Nanobiotechnol. 2022, 20, 155. [Google Scholar]
- Wang, Y.; Fu, S.; Lu, Y.; Lai, R.; Liu, Z.; Luo, W.; Xu, Y. Chitosan/hyaluronan nanogels co-delivering methotrexate and 5-aminolevulinic acid: A combined chemo-photodynamic therapy for psoriasis. Carbohydr. Polym. 2022, 277, 118819. [Google Scholar]
- Reich, K.; Warren, R.B.; Lebwohl, M.; Gooderham, M.; Strober, B.; Langley, R.G.; Paul, C.; De Cuyper, D.; Vanvoorden, V.; Madden, C. Bimekizumab versus secukinumab in plaque psoriasis. N. Engl. J. Med. 2021, 385, 142–152. [Google Scholar]
- Garshick, M.S.; Ward, N.L.; Krueger, J.G.; Berger, J.S. Cardiovascular Risk in Patients With Psoriasis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2021, 77, 1670–1680. [Google Scholar] [CrossRef]
- Griffiths, C.E.M.; Armstrong, A.W.; Gudjonsson, J.E.; Barker, J.N.W.N. Psoriasis. Lancet 2021, 397, 1301–1315. [Google Scholar] [CrossRef]
- Herster, F.; Bittner, Z.; Archer, N.K.; Dickhöfer, S.; Eisel, D.; Eigenbrod, T.; Knorpp, T.; Schneiderhan-Marra, N.; Löffler, M.W.; Kalbacher, H.; et al. Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. Nat. Commun. 2020, 11, 105. [Google Scholar] [CrossRef]
- Chang, H.W.; Yan, D.; Singh, R.; Liu, J.; Lu, X.; Ucmak, D.; Lee, K.; Afifi, L.; Fadrosh, D.; Leech, J.; et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome 2018, 6, 154. [Google Scholar] [CrossRef]
- Jaradat, E.; Meziane, A.; Lamprou, D.A. Conventional vs PEGylated loaded liposomal formulations by microfluidics for delivering hydrophilic chemotherapy. Int. J. Pharm. 2024, 655, 124077. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Z.; Liu, C.; Shi, Z.; Wang, X.; Huang, F. Barnacle-Inspired Integration of Alginate Multilayer Hydrogels Via Calcium Mineralization. ACS Sustain. Chem. Eng. 2024, 12, 2262–2272. [Google Scholar]
- Ding, J.; Dwibedi, V.; Huang, H.; Ge, Y.; Li, Y.; Li, Q.; Sun, T. Preparation and antibacterial mechanism of cinnamaldehyde/tea polyphenol/polylactic acid coaxial nanofiber films with zinc oxide sol to Shewanella putrefaciens. Int. J. Biol. Macromol. 2023, 237, 123932. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Zhang, J.; Xu, D.; Li, Y.; Liu, Y.; Zhang, X.; Zhang, R.; Wu, Z.; Weng, P. Antimicrobial Effect of Tea Polyphenols against Foodborne Pathogens: A Review. J. Food Prot. 2021, 84, 1801–1808. [Google Scholar] [CrossRef]
- Yang, H.-T.; Chen, J.-W.; Rathod, J.; Jiang, Y.-Z.; Tsai, P.-J.; Hung, Y.-P.; Ko, W.-C.; Paredes-Sabja, D.; Huang, I.-H. Lauric acid is an inhibitor of Clostridium difficile growth in vitro and reduces inflammation in a mouse infection model. Front. Microbiol. 2018, 8, 2635. [Google Scholar]
- Kamata, M.; Tada, Y. Dendritic cells and macrophages in the pathogenesis of psoriasis. Front. Immunol. 2022, 13, 941071. [Google Scholar]
- Pang, P.; Liu, W.; Ma, S.; Liu, J.; Wu, S.; Xue, W.; Zhang, J.; Ji, X. Self-assembling natural flavonoid nanomedicines for alveolar macrophage reprogramming by restoring mitochondrial function in acute lung injury therapy. Chem. Eng. J. 2025, 506, 160171. [Google Scholar]
- Sarkhel, S.; Jaiswal, A. Emerging Frontiers in In Situ Forming Hydrogels for Enhanced Hemostasis and Accelerated Wound Healing. ACS Appl. Mater. Interfaces 2024, 16, 61503–61529. [Google Scholar]
- Liang, Y.; He, J.; Guo, B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano 2021, 15, 12687–12722. [Google Scholar] [CrossRef]
- Park, J.; Hassan, M.A.; Nabawy, A.; Li, C.H.; Jiang, M.; Parmar, K.; Reddivari, A.; Goswami, R.; Jeon, T.; Patel, R. Engineered Bacteriophage-Polymer Nanoassemblies for Treatment of Wound Biofilm Infections. ACS Nano 2024, 18, 26928–26936. [Google Scholar]
- Lai, D.; Zhou, X.; Chen, Q. Measurements and predictions of the skin temperature of human subjects on outdoor environment. Energy Build. 2017, 151, 476–486. [Google Scholar]
Gene | Forward Primer | Reverse Primer |
---|---|---|
GAPDH | GGTTGTCTCCTGCGACTTCA | TGGTCCAGGGTTTCTTACTCC |
TNF-α | GGTGCCTATGTCTCAGCCTCTT | GCCATAGAACTGATGAGAGGGAG |
iNOS | CACCTTGGAGTTCACCCAGT | ACCACTCGTACTTGGGATGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, W.; Ye, Q.; Zhang, H.; Xie, S.; Xie, S.; Chen, C.; Liu, J.; Huang, Z.; Luo, H.-B.; Guo, L. A Tea Polyphenol-Infused Sprayable Thermosensitive Liposomal Hydrogel for Enhanced Anti-Inflammatory and Antibacterial Psoriasis Treatment. J. Funct. Biomater. 2025, 16, 124. https://doi.org/10.3390/jfb16040124
Shen W, Ye Q, Zhang H, Xie S, Xie S, Chen C, Liu J, Huang Z, Luo H-B, Guo L. A Tea Polyphenol-Infused Sprayable Thermosensitive Liposomal Hydrogel for Enhanced Anti-Inflammatory and Antibacterial Psoriasis Treatment. Journal of Functional Biomaterials. 2025; 16(4):124. https://doi.org/10.3390/jfb16040124
Chicago/Turabian StyleShen, Wei, Qilian Ye, Hongbo Zhang, Shenghong Xie, Shiqi Xie, Cailian Chen, Jinying Liu, Zhengwei Huang, Hai-Bin Luo, and Ling Guo. 2025. "A Tea Polyphenol-Infused Sprayable Thermosensitive Liposomal Hydrogel for Enhanced Anti-Inflammatory and Antibacterial Psoriasis Treatment" Journal of Functional Biomaterials 16, no. 4: 124. https://doi.org/10.3390/jfb16040124
APA StyleShen, W., Ye, Q., Zhang, H., Xie, S., Xie, S., Chen, C., Liu, J., Huang, Z., Luo, H.-B., & Guo, L. (2025). A Tea Polyphenol-Infused Sprayable Thermosensitive Liposomal Hydrogel for Enhanced Anti-Inflammatory and Antibacterial Psoriasis Treatment. Journal of Functional Biomaterials, 16(4), 124. https://doi.org/10.3390/jfb16040124