Fabrication and Characterization of Immature Porcine Cartilage-Derived Cell Biomembranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Isolation of Stem Cells from Cartilage Tissue of One-Day-Old Pig
2.2. The Evaluation of the Biological Characteristics of the Cells Collected from One-Day-Old Porcine Cartilage Tissue
2.3. The Evaluation of the Differentiation Potential of the Stem Cells from One-Day-Old Porcine Cartilage Tissue
2.4. The Evaluation of the Biomembrane-Forming Capability of the Stem Cells from One-Day-Old Porcine Cartilage Tissue
2.5. Proteomic Analysis in PCM Biomembrane
2.6. The Evaluation of the Cartilage Repair Capacity of the PCM Biomembrane
2.7. Statistical Analysis
3. Results
3.1. Collection and Isolation of Stem Cells from Cartilage Tissue of One-Day-Old Pig
3.2. The Evaluation of the Biological Characteristics of the Cells Collected from One-Day-Old Porcine Cartilage Tissue
3.3. The Evaluation of the Differentiation Potential of the Stem Cells from One-Day-Old Porcine Cartilage Tissue
3.4. The Evaluation of the Biomembrane-Forming Capability of Stem Cells from One-Day-Old Porcine Cartilage Tissue
3.5. Proteomic Analysis of PCM Biomembrane
3.6. The Evaluation of the Cartilage Repair Capacity of PCM Biomembrane
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACI | autologous chondrocyte implantation |
OA | osteoarthritis |
ECM | extracellular matrix |
GAG | Glycoaminoglycan |
PBS | phosphate-buffered saline |
P/S | Penicillin–Streptomycin |
DMEM | Dulbecco’s Modified Eagle Medium |
FBS | fetal bovine serum |
ITS | insulin–transferrin–selenium |
References
- Mautner, K.; Gottschalk, M.; Boden, S.D.; Akard, A.; Bae, W.C.; Black, L.; Boggess, B.; Chatterjee, P.; Chung, C.B.; Easley, K.A.; et al. Cell-based versus corticosteroid injections for knee pain in osteoarthritis: A randomized phase 3 trial. Nat. Med. 2023, 29, 3120–3126. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef] [PubMed]
- Mithoefer, K.; Hambly, K.; Logerstedt, D.; Ricci, M.; Silvers, H.; Della Villa, S. Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete. J. Orthop. Sports Phys. Ther. 2012, 42, 254–273. [Google Scholar] [CrossRef] [PubMed]
- Fotopoulos, V.; Mouzopoulos, G.; Floros, T.; Tzurbakis, M. Steroid-induced femoral head osteonecrosis in immune thrombocytopenia treatment with osteochondral autograft transplantation. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 2605–2610. [Google Scholar] [CrossRef]
- Goggs, R.; Vaughan-Thomas, A.; Clegg, P.D.; Carter, S.D.; Innes, J.F.; Mobasheri, A.; Shakibaei, M.; Schwab, W.; Bondy, C.A. Nutraceutical therapies for degenerative joint diseases: A critical review. Crit. Rev. Food Sci. Nutr. 2005, 45, 145–164. [Google Scholar] [CrossRef]
- Kang, S.W.; Bada, L.P.; Kang, C.S.; Lee, J.S.; Kim, C.H.; Park, J.H.; Kim, B.-S. Articular cartilage regeneration with microfracture and hyaluronic acid. Biotechnol. Lett. 2008, 30, 435–439. [Google Scholar] [CrossRef]
- Legovic, D.; Zorihic, S.; Gulan, G.; Tudor, A.; Prpic, T.; Santic, V.; Bobinac, D.; Sestan, B.; Mihelić, R.; Jurdana, H. Microfracture technique in combination with intraarticular hyaluronic acid injection in articular cartilage defect regeneration in rabbit model. Coll. Antropol. 2009, 33, 619–623. [Google Scholar]
- Ohashi, H.; Nishida, K.; Yoshida, A.; Nasu, Y.; Nakahara, R.; Matsumoto, Y.; Takeshita, A.; Kaneda, D.; Saeki, M.; Ozaki, T. Adipose-Derived Extract Suppresses IL-1beta-Induced Inflammatory Signaling Pathways in Human Chondrocytes and Ameliorates the Cartilage Destruction of Experimental Osteoarthritis in Rats. Int. J. Mol. Sci. 2021, 22, 9781. [Google Scholar] [CrossRef]
- Thosani, R.; Pawar, V.; Giridhar, R.; Yadav, M.R. Improved percutaneous delivery of some NSAIDs for the treatment of arthritis. J. Pharm. Bioallied Sci. 2012, 4 (Suppl. S1), S12–S13. [Google Scholar] [CrossRef]
- Betzler, B.K.; Bin Muhammad Ridzwan Chew, A.H.; Bin Abd Razak, H.R. Intra-articular injection of orthobiologics in patients undergoing high tibial osteotomy for knee osteoarthritis is safe and effective—A systematic review. J. Exp. Orthop. 2021, 8, 83. [Google Scholar] [CrossRef]
- LaPrade, R.F.; Ly, T.V.; Wentorf, F.A.; Engebretsen, L. The posterolateral attachments of the knee: A qualitative and quantitative morphologic analysis of the fibular collateral ligament, popliteus tendon, popliteofibular ligament, and lateral gastrocnemius tendon. Am. J. Sports Med. 2003, 31, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Stotter, C.; Nehrer, S.; Klestil, T.; Reuter, P. Autologous chondrocyte transplantation with bone augmentation for the treatment of osteochodral defects of the knee: Treatment of osteochondral defects of the femoral condyles using autologous cancellous bone from the iliac crest combined with matrix-guided autologous chondrocyte transplantation. Oper. Orthop. Traumatol. 2022, 34, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Truong, M.D.; Choi, B.H.; Kim, Y.J.; Kim, M.S.; Min, B.H. Granulocyte macrophage—Colony stimulating factor (GM-CSF) significantly enhances articular cartilage repair potential by microfracture. Osteoarthr. Cartil. 2017, 25, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Truong, M.D.; Chung, J.Y.; Kim, Y.J.; Jin, L.H.; Kim, B.J.; Choi, B.H.; Min, B. Histomorphochemical comparison of microfracture as a first-line and a salvage procedure: Is microfracture still a viable option for knee cartilage repair in a salvage situation? J. Orthop. Res. 2014, 32, 802–810. [Google Scholar] [CrossRef]
- Gong, M.; Chi, C.; Ye, J.; Liao, M.; Xie, W.; Wu, C.; Shi, R.; Zhang, L. Icariin-loaded electrospun PCL/gelatin nanofiber membrane as potential artificial periosteum. Colloids Surf. B Biointerfaces 2018, 170, 201–209. [Google Scholar] [CrossRef]
- Moore, S.R.; Heu, C.; Yu, N.Y.; Whan, R.M.; Knothe, U.R.; Milz, S.; Tate, M.L.K. Translating Periosteum’s Regenerative Power: Insights from Quantitative Analysis of Tissue Genesis with a Periosteum Substitute Implant. Stem Cells Transl. Med. 2016, 5, 1739–1749. [Google Scholar] [CrossRef]
- Gomoll, A.H.; Probst, C.; Farr, J.; Cole, B.J.; Minas, T. Use of a type I/III bilayer collagen membrane decreases reoperation rates for symptomatic hypertrophy after autologous chondrocyte implantation. Am. J. Sports Med. 2009, 37 (Suppl. S1), 20S–23S. [Google Scholar] [CrossRef]
- Crapo, P.M.; Gilbert, T.W.; Badylak, S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011, 32, 3233–3243. [Google Scholar] [CrossRef]
- Park, D.Y.; Min, B.H.; Park, S.R.; Oh, H.J.; Truong, M.D.; Kim, M.; Choi, J.-Y.; Park, I.-S.; Choi, B.H. Engineered cartilage utilizing fetal cartilage-derived progenitor cells for cartilage repair. Sci. Rep. 2020, 10, 5722. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, H.; Yu, M.; Xu, T.; Li, X.; Li, L. Differentiation plasticity of human fetal articular chondrocytes. Otolaryngol. Head Neck Surg. 2006, 135, 61–67. [Google Scholar] [CrossRef]
- Choi, W.H.; Kim, H.R.; Lee, S.J.; Jeong, N.; Park, S.R.; Choi, B.H.; Min, B.-H. Fetal Cartilage-Derived Cells Have Stem Cell Properties and Are a Highly Potent Cell Source for Cartilage Regeneration. Cell Transplant. 2016, 25, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Mirmalek-Sani, S.H.; Tare, R.S.; Morgan, S.M.; Roach, H.I.; Wilson, D.I.; Hanley, N.A.; Oreffo, R.O. Characterization and multipotentiality of human fetal femur-derived cells: Implications for skeletal tissue regeneration. Stem Cells 2006, 24, 1042–1053. [Google Scholar] [CrossRef]
- Quintin, A.; Schizas, C.; Scaletta, C.; Jaccoud, S.; Applegate, L.A.; Pioletti, D.P. Plasticity of fetal cartilaginous cells. Cell Transplant. 2010, 19, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, J.; Park, S.R.; Park, D.Y.; Kim, Y.J.; Choi, B.H.; Min, B. Comparison of fetal cartilage-derived progenitor cells isolated at different developmental stages in a rat model. Dev. Growth Differ. 2016, 58, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Samsudin, E.Z.; Kamarul, T. The comparison between the different generations of autologous chondrocyte implantation with other treatment modalities: A systematic review of clinical trials. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 3912–3926. [Google Scholar] [CrossRef]
- Nitti, P.; Narayanan, A.; Pellegrino, R.; Villani, S.; Madaghiele, M.; Demitri, C. Cell-Tissue Interaction: The Biomimetic Approach to Design Tissue Engineered Biomaterials. Bioengineering 2023, 10, 1122. [Google Scholar] [CrossRef]
- Yang, C.; Chen, R.; Chen, C.; Yang, F.; Xiao, H.; Geng, B.; Xia, Y. Tissue engineering strategies hold promise for the repair of articular cartilage injury. Biomed. Eng. Online 2024, 23, 92. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, W.; Chen, W. Plasma Membrane Integrates Biophysical and Biochemical Regulation to Trigger Immune Receptor Functions. Front. Immunol. 2021, 12, 613185. [Google Scholar] [CrossRef]
- Zellner, J.; Krutsch, W.; Pfeifer, C.; Koch, M.; Nerlich, M.; Angele, P. Autologous chondrocyte implantation for cartilage repair: Current perspectives. Orthop. Res. Rev. 2015, 7, 149–158. [Google Scholar] [CrossRef]
- Leja, L.; Minas, T. Periosteum-covered ACI (ACI-P) versus collagen membrane ACI (ACI-C): A single-surgeon, large cohort analysis of clinical outcomes and graft survivorship. J. Cartil. Jt. Preserv. 2021, 1, 100010. [Google Scholar] [CrossRef]
- Morales-Jiménez, M.; Palacio, D.A.; Palencia, M.; Meléndrez, M.F.; Rivas, B.L. Bio-Based Polymeric Membranes: Development and Environmental Applications. Membranes 2023, 13, 625. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Du, L.; Wu, Y.; Qin, J.; Gu, X.; Guo, Z.; Li, Y. Biomembrane-Modified Biomimetic Nanodrug Delivery Systems: Frontier Platforms for Cardiovascular Disease Treatment. Biomolecules 2024, 14, 960. [Google Scholar] [CrossRef] [PubMed]
Accession | Gene Name | Description |
---|---|---|
Q15582 | TGFBI | Transforming growth factor-beta-induced protein |
Q16610 | ECM1 | Extracellular matrix protein 1 |
P35858 | IGFALS | Insulin-like growth factor-binding protein complex acid labile subunit |
P51858 | HDGF | Hepatoma-derived growth factor |
Q06210 | GFPT1 | Glutamine–fructose-6-phosphate aminotransferase [isomerizing] 1 |
P18065 | IGFBP2 | Insulin-like growth factor-binding protein 2 |
Q7Z4V5 | HDGFL2 | Hepatoma-derived growth factor-related protein 2 |
Q16270 | IGFBP7 | Insulin-like growth factor-binding protein 7 |
Q04756 | HGFAC | Hepatocyte growth factor activator |
Q13630 | GFUS | GDP-L-fucose synthase |
Q9P2B2 | PTGFRN | Prostaglandin F2 receptor negative regulator |
P11717 | IGF2R | Cation-independent mannose-6-phosphate receptor |
P22692 | IGFBP4 | Insulin-like growth factor-binding protein 4 |
P05019 | IGF1 | Insulin-like growth factor I |
Q9Y6M1 | IGF2BP2 | Insulin-like growth factor 2 mRNA-binding protein 2 |
P24593 | IGFBP5 | Insulin-like growth factor-binding protein 5 |
P61812 | TGFB2 | Transforming growth factor beta-2 proprotein |
P52594 | AGFG1 | Arf-GAP domain and FG repeat-containing protein 1 |
P24592 | IGFBP6 | Insulin-like growth factor-binding protein 6 |
P49767 | VEGFC | Vascular endothelial growth factor C |
Q9NZT2 | OGFR | Opioid growth factor receptor |
P00533 | EGFR | Epidermal growth factor receptor |
Q9Y3E1 | HDGFL3 | Hepatoma-derived growth factor-related protein 3 |
P09619 | PDGFRB | Platelet-derived growth factor receptor beta |
Q7Z7M0 | MEGF8 | Multiple epidermal growth factor-like domains protein 8 |
O00425 | IGF2BP3 | Insulin-like growth factor 2 mRNA-binding protein 3 |
P01344 | IGF2 | Insulin-like growth factor II |
Q14512 | FGFBP1 | Fibroblast growth factor-binding protein 1 |
Q9NZI8 | IGF2BP1 | Insulin-like growth factor 2 mRNA-binding protein 1 |
P56159 | GFRA1 | GDNF family receptor alpha-1 |
C9JMX4 | IGFBP3 | Insulin-like growth factor-binding protein 3 (Fragment) |
P16234 | PDGFRA | Platelet-derived growth factor receptor alpha |
P14136 | GFAP | Glial fibrillary acidic protein |
A0A0A0MQV6 | FGF2 | Fibroblast growth factor |
P08833 | IGFBP1 | Insulin-like growth factor-binding protein 1 |
P01133 | EGF | Pro-epidermal growth factor |
Q6UW32 | IGFL1 | Insulin growth factor-like family member 1 |
Q9GZP0 | PDGFD | Platelet-derived growth factor D |
Q969H8 | MYDGF | Myeloid-derived growth factor |
O95081 | AGFG2 | Arf-GAP domain and FG repeat-containing protein 2 |
A0A2R8YEI1 | HGF | Hepatocyte growth factor |
P04085 | PDGFA | Platelet-derived growth factor subunit A |
Q9NVK5 | FGFR1OP2 | FGFR1 oncogene partner 2 |
Q8IUX8 | EGFL6 | Epidermal growth factor-like protein 6 |
Q3B7J2 | GFOD2 | Glucose-fructose oxidoreductase domain-containing protein 2 |
Q9NRA1 | PDGFC | Platelet-derived growth factor C |
P49763 | PGF | Placenta growth factor |
H3BRP2 | TGFB1I1 | Transforming growth factor beta-1-induced transcript 1 protein |
Q63HQ2 | EGFLAM | Pikachurin |
P55789 | GFER | FAD-linked sulfhydryl oxidase ALR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, P.-V.; Pham Thi, V.; Vo, T.-N.; Nguyen, V.-T.; Tran, T.-D.; Vo, V.-K.; Le Thi, P.; Tran, D.L.; Truong, M.-D. Fabrication and Characterization of Immature Porcine Cartilage-Derived Cell Biomembranes. J. Funct. Biomater. 2025, 16, 92. https://doi.org/10.3390/jfb16030092
Bui P-V, Pham Thi V, Vo T-N, Nguyen V-T, Tran T-D, Vo V-K, Le Thi P, Tran DL, Truong M-D. Fabrication and Characterization of Immature Porcine Cartilage-Derived Cell Biomembranes. Journal of Functional Biomaterials. 2025; 16(3):92. https://doi.org/10.3390/jfb16030092
Chicago/Turabian StyleBui, Phuong-Vy, Vang Pham Thi, Trung-Nhan Vo, Viet-Trinh Nguyen, Thai-Duong Tran, Vy-Khanh Vo, Phuong Le Thi, Dieu Linh Tran, and Minh-Dung Truong. 2025. "Fabrication and Characterization of Immature Porcine Cartilage-Derived Cell Biomembranes" Journal of Functional Biomaterials 16, no. 3: 92. https://doi.org/10.3390/jfb16030092
APA StyleBui, P.-V., Pham Thi, V., Vo, T.-N., Nguyen, V.-T., Tran, T.-D., Vo, V.-K., Le Thi, P., Tran, D. L., & Truong, M.-D. (2025). Fabrication and Characterization of Immature Porcine Cartilage-Derived Cell Biomembranes. Journal of Functional Biomaterials, 16(3), 92. https://doi.org/10.3390/jfb16030092