Influence of Cusp Coverage Design and Hybrid Resin–Ceramic Materials on the Biomechanical Performance of Partial Coverage Restorations
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
2.2. Specimens Preparation
2.3. Adhesive Protocol
2.4. Digital Impression and Fabrication of Restorations
2.5. Cementation Procedures
2.6. Chewing Simulation
2.7. Marginal Adaptation Test
2.8. Fracture Resistance Test
2.9. Failure Mode Analysis
2.10. Statistical Analysis
3. Results
3.1. Marginal Adaptation Test
3.2. Fracture Load Measurement (Fracture Resistance Test)
3.3. Failure Mode Analysis
3.4. Effect Size Analysis
4. Discussion
5. Conclusions
- 1.
- Complete cusp coverage significantly enhanced fracture resistance and resulted in more favorable, repairable failure modes, while functional cusp coverage led to more catastrophic failures. These findings indicate that preparation design plays a more decisive role than material selection in influencing the clinical outcomes of partial-coverage restorations.
- 2.
- Both VITA Enamic and GC Cerasmart demonstrated fracture loads exceeding posterior masticatory forces, indicating acceptable clinical strength.
- 3.
- VITA Enamic exhibited a higher incidence of catastrophic failures than GC Cerasmart, particularly in restorations with functional cusp coverage.
- 4.
- Thermocycling in distilled water may underestimate long-term interfacial degradation, as it does not fully replicate the complexity of the oral environment.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CAD/CAM | Computer-Aided Design/Computer-Aided Manufacturing |
| CC | Complete Cusp Coverage |
| CEJ | Cementoenamel Junction |
| EN | VITA Enamic (Hybrid Resin–Ceramic) |
| FC | Functional Cusp Coverage |
| GC | GC Cerasmart (Hybrid Resin–Ceramic) |
| HF | Hydrofluoric Acid |
| LED | Light-Emitting Diode |
| MOD | Mesio-Occluso-Distal |
| Mpa | Megapascal |
| PICN | Polymer-Infiltrated Ceramic Network |
References
- Veneziani, M. Posterior indirect adhesive restorations: Updated indications and the Morphology Driven Preparation Technique. Int. J. Esthet. Dent. 2017, 12, 204–230. [Google Scholar]
- Kassis, C.; Khoury, P.; Mehanna, C.Z.; Baba, N.Z.; Bou Chebel, F.; Daou, M.; Hardan, L. Effect of inlays, onlays and endocrown cavity design preparation on fracture resistance and fracture mode of endodontically treated teeth: An in vitro study. J. Prosthodont. 2021, 30, 625–631. [Google Scholar] [CrossRef]
- Alnajjar, F.A.; Alloughani, A.J.; Alhajj, M.N.; Baig, M.R. Fracture Resistance of Posterior Milled Nanoceramic Crowns after Thermomechanical Aging. J. Funct. Biomater. 2024, 15, 171. [Google Scholar] [CrossRef] [PubMed]
- Haridy, M.F.; Mohamed, A.R.; Saber, S.; Schafer, E.; Swelam, S.E.; Haridy, Y.M.; Ahmed, H.S. Enhancing severely compromised premolar strength: Role of cusp reduction design in CAD/CAM composite restorations. Odontology 2025, Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hofsteenge, J.; van den Heijkant, I.; Cune, M.; Bazos, P.; van der Made, S.; Kerdijk, W.; Gresnigt, M. Influence of preparation design and restorative material on fatigue and fracture strength of restored maxillary premolars. Oper. Dent. 2021, 46, E68–E79. [Google Scholar] [CrossRef]
- Prott, L.S.; Klein, P.; Spitznagel, F.A.; Blatz, M.B.; Pieralli, S.; Gierthmuehlen, P.C. Survival of Partial Coverage Restorations on Posterior Teeth-A Scoping Review. J. Esthet. Restor. Dent. 2025, 37, 642–663. [Google Scholar] [CrossRef]
- Serin Kalay, T.; Yildirim, T.; Ulker, M. Effects of different cusp coverage restorations on the fracture resistance of endodontically treated maxillary premolars. J. Prosthet. Dent. 2016, 116, 404–410. [Google Scholar] [CrossRef]
- Wang, B.; Fan, J.; Wang, L.; Xu, B.; Wang, L.; Chai, L. Onlays/partial crowns versus full crowns in restoring posterior teeth: A systematic review and meta-analysis. Head Face Med. 2022, 18, 36. [Google Scholar] [CrossRef]
- Kassis, C.; Mehanna, C.; Khoury, P.; Tohme, H.; Cuevas-Suárez, C.E.; Bourgi, R.; Lukomska-Szymanska, M.; Hardan, L. Triple scan evaluation of internal and marginal adaptation of overlays using different restorative materials. J. Esthet. Restor. Dent. 2023, 35, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, S.; Rebello de Sampaio, F.; Braga, M.M.; Sesma, N.; Özcan, M. Survival rate of resin and ceramic inlays, onlays, and overlays: A systematic review and meta-analysis. J. Dent. Res. 2016, 95, 985–994. [Google Scholar] [CrossRef]
- Dioguardi, M.; Alovisi, M.; Troiano, G.; Caponio, C.V.A.; Baldi, A.; Rocca, G.T.; Comba, A.; Lo Muzio, L.; Scotti, N. Clinical outcome of bonded partial indirect posterior restorations on vital and non-vital teeth: A systematic review and meta-analysis. Clin. Oral Investig. 2021, 25, 6597–6621. [Google Scholar] [CrossRef] [PubMed]
- Goujat, A.; Abouelleil, H.; Colon, P.; Jeannin, C.; Pradelle, N.; Seux, D.; Grosgogeat, B. Marginal and internal fit of CAD-CAM inlay/onlay restorations: A systematic review of in vitro studies. J. Prosthet. Dent. 2019, 121, 590–597.e3. [Google Scholar] [CrossRef]
- Bassir, M.M.; Labibzadeh, A.; Mollaverdi, F. The effect of amount of lost tooth structure and restorative technique on fracture resistance of endodontically treated premolars. J. Conserv. Dent. 2013, 16, 413–417. [Google Scholar] [CrossRef]
- Refaey, H.S.; Abdelkader, S.H.; Aly, Y.M. Fracture resistance and marginal fit of three different overlay designs using advanced zirconia-reinforced lithium disilicate CAD/CAM material. BMC Oral Health 2025, 25, 20. [Google Scholar] [CrossRef]
- Alassar, R.M.; Samy, A.M.; Abdel-Rahman, F.M. Effect of cavity design and material type on fracture resistance and failure pattern of molars restored by computer-aided design/computer-aided manufacturing inlays/onlays. J. Dent. Res. 2021, 18, 14. [Google Scholar] [CrossRef]
- Alves de Carvalho, I.F.; Marques, S.; Araújo, F.M.; Azevedo, L.F.; Donato, H.; Correia, A. Clinical performance of CAD/CAM tooth-supported ceramic restorations: A systematic review. Int. J. Periodontics Restor. Dent. 2018, 38, e68–e78. [Google Scholar] [CrossRef] [PubMed]
- Fathy, H.; Hamama, H.H.; El-Wassefy, N.; Mahmoud, S.H. Clinical performance of resin-matrix ceramic partial coverage restorations: A systematic review. Clin. Oral Investig. 2022, 26, 3807–3822. [Google Scholar] [CrossRef]
- Fasbinder, D.J.; Neiva, G.F.; Heys, D.; Heys, R. Clinical evaluation of chairside Computer Assisted Design/Computer Assisted Machining nano-ceramic restorations: Five-year status. J. Esthet. Restor. Dent. 2020, 32, 193–203. [Google Scholar] [CrossRef]
- Alghauli, M.A.; Al-Gabri, R.S.; Keshk, A.; Mirah, M.A.; Alqutaibi, A.Y. Clinical Complications and Survival Rate of Resin Matrix Ceramic Restorations: A Systematic Review and Meta-Analysis. J. Esthet. Restor. Dent. 2025, 37, 1721–1739. [Google Scholar] [CrossRef]
- Attia, M.; Salama, A.A. Influence of Ceramic Materials and Preparation Designs on the Marginal Adaptation of Inlays and Onlays after Thermocycling. Int. J. Prosthodont. 2024, 37, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Suksuphan, P.; Krajangta, N.; Didron, P.P.; Wasanapiarnpong, T.; Rakmanee, T. Marginal adaptation and fracture resistance of milled and 3D-printed CAD/CAM hybrid dental crown materials with various occlusal thicknesses. J. Prosthodont. Res. 2023, 68, 326–335. [Google Scholar] [CrossRef]
- Dartora, G.; Pereira, G.K.R.; de Carvalho, R.V.; Zucuni, C.P.; Valandro, L.F.; Cesar, P.F.; Caldas, R.A.; Bacchi, A. Comparison of endocrowns made of lithium disilicate glass-ceramic or polymer-infiltrated ceramic networks and direct composite resin restorations: Fatigue performance and stress distribution. J. Mech. Behav. Biomed. Mater. 2019, 100, 103401. [Google Scholar] [CrossRef]
- Bustamante-Hernández, N.; Montiel-Company, J.M.; Bellot-Arcís, C.; Mañes-Ferrer, J.F.; Solá-Ruíz, M.F.; Agustín-Panadero, R.; Fernández-Estevan, L. Clinical behavior of ceramic, hybrid and composite onlays. A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2020, 17, 7582. [Google Scholar] [CrossRef] [PubMed]
- Coldea, A.; Swain, M.V.; Thiel, N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yu, P.; Arola, D.D.; Min, J.; Gao, S. A comparative study on the wear behavior of a polymer infiltrated ceramic network (PICN) material and tooth enamel. Dent. Mater. 2017, 33, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- Kois, D.E.; Isvilanonda, V.; Chaiyabutr, Y.; Kois, J.C. Evaluation of fracture resistance and failure risks of posterior partial coverage restorations. J. Esthet. Restor. Dent. 2013, 25, 110–122. [Google Scholar] [CrossRef]
- He, L.-H.; Swain, M. A novel polymer infiltrated ceramic dental material. Dent. Mater. 2011, 27, 527–534. [Google Scholar] [CrossRef]
- Salah, M.; Halim, C.H.; Nabil, O. Marginal accuracy of CAD/CAM occlusal veneers fabricated from glass and hybrid ceramics with two preparation designs: An in vitro study. Int. J. Appl. Dent. Sci. 2023, 9, 93–100. [Google Scholar] [CrossRef]
- Liu, X.; Cameron, A.B.; Haugli, K.H.; Mougios, A.A.; Heng, N.C.K.; Choi, J.J.E. Accuracy of lithium disilicate and polymer-infiltrated ceramic-network (PICN) ceramic restorations fabricated from subtractive manufacturing: A systematic review of in vitro studies. J. Dent. 2025, 161, 105872. [Google Scholar] [CrossRef]
- García-Engra, G.; Fernandez-Estevan, L.; Casas-Terrón, J.; Fons-Font, A.; Castelo-Baz, P.; Agustín-Panadero, R.; Román-Rodriguez, J.L. Fracture Resistance of New Metal-Free Materials Used for CAD-CAM Fabrication of Partial Posterior Restorations. Medicina 2020, 56, 132. [Google Scholar] [CrossRef]
- Berar, A.; Dudescu, M.; Carbonel, M.; Bocăneț, V.; Buduru, S. In-vitro comparative study of compressive strength in CAD/CAM dental materials. Rom. J. Oral Rehabil. 2024, 16, 119–130. [Google Scholar] [CrossRef]
- Abdou, A.; Takagaki, T.; Alghamdi, A.; Tichy, A.; Nikaido, T.; Tagami, J. Bonding performance of dispersed filler resin composite CAD/CAM blocks with different surface treatment protocols. Dent. Mater. J. 2021, 40, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Mahrous, A.I.; Salama, A.A.; Shabaan, A.A.; Abdou, A.; Radwan, M.M. Color stability of two different resin matrix ceramics: Randomized clinical trial. BMC Oral Health 2023, 23, 665. [Google Scholar] [CrossRef]
- Yin, R.; Kim, Y.-K.; Jang, Y.-S.; Lee, J.-J.; Lee, M.-H.; Bae, T.-S. Comparative evaluation of the mechanical properties of CAD/CAM dental blocks. Odontology 2019, 107, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Alsulimani, O.; Yousief, S.A.; Al-Dabbagh, R.A.; Attar, E.A.; Bukhary, D.M.; Algamaiah, H.; Musawa, K.; Subahi, A.; Abuzinadah, S.H.; Alhaddad, A.J.; et al. The Effect of Chewing Simulation on Flexural Strength of Different Lithium Disilicate Ceramics. Clin. Cosmet. Investig. Dent. 2025, 17, 67–76. [Google Scholar] [CrossRef]
- Saadeddin, N.; Al-Khalil, M.A.; Al-Adel, O. Effect of immediate dentin sealing on the fracture strength of lithium disilicate ceramic onlays. Swiss. Dent. J. 2022, 132, 482–489. [Google Scholar] [CrossRef]
- El-Farag, S.A.A.; Elerian, F.A.; Elsherbiny, A.A.; Abbas, M.H. Impact of different CAD/CAM materials on internal and marginal adaptations and fracture resistance of endocrown restorations with: 3D finite element analysis. BMC Oral Health 2023, 23, 421. [Google Scholar] [CrossRef]
- Yerliyurt, K.; Sarıkaya, I. Color stability of hybrid ceramics exposed to beverages in different combinations. BMC Oral Health 2022, 22, 180. [Google Scholar] [CrossRef]
- Alzahrani, S.J.; Hajjaj, M.S.; Yeslam, H.E.; Marghalani, T.Y. Fracture Resistance Evaluation and Failure Modes Rating Agreement for Two Endocrown Designs: An In Vitro Study. Appl. Sci. 2023, 13, 3001. [Google Scholar] [CrossRef]
- Rohym, S.M.; Badra, H.; Nassar, H. Comparative evaluation of marginal adaptation and fatigue resistance of endodontically treated premolars restored with direct and indirect coronal restorations: An in vitro study. BMC Oral Health 2024, 24, 696. [Google Scholar] [CrossRef] [PubMed]
- Caussin, E.; Izart, M.; Ceinos, R.; Attal, J.P.; Beres, F.; François, P. Advanced Material Strategy for Restoring Damaged Endodontically Treated Teeth: A Comprehensive Review. Materials 2024, 17, 3736. [Google Scholar] [CrossRef]
- Alamoush, R.A.; Silikas, N.; Salim, N.A.; Al-Nasrawi, S.; Satterthwaite, J.D. Effect of the Composition of CAD/CAM Composite Blocks on Mechanical Properties. Biomed Res. Int. 2018, 2018, 4893143. [Google Scholar] [CrossRef]
- Beyabanaki, E.; Ashtiani, R.E.; Moradi, M.; Namdari, M.; Mostafavi, D.; Zandinejad, A. Biaxial flexural strength and Weibull characteristics of a resin ceramic material after thermal-cycling. J. Prosthodont. 2023, 32, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Skorulska, A.; Piszko, P.; Rybak, Z.; Szymonowicz, M.; Dobrzyński, M. Review on Polymer, Ceramic and Composite Materials for CAD/CAM Indirect Restorations in Dentistry-Application, Mechanical Characteristics and Comparison. Materials 2021, 14, 1592. [Google Scholar] [CrossRef]
- Vervack, V.; Johansson, C.; Coster, P.; Fokkinga, W.; Papia, E.; Vandeweghe, S. The fracture strength and the failure mode of lithium disilicate or resin nano ceramics as a crown, overlay, or endocrown restoration on endodontically treated teeth. J. Esthet. Restor. Dent. 2024, 36, 796–803. [Google Scholar] [CrossRef]
- Hezavehi, M.; Neshandar Asli, H.; Babaee Hemmati, Y.; Falahchai, M. Fracture strength and marginal and internal adaptation of lithium disilicate and hybrid ceramic endocrowns and non-retentive overlays for endodontically treated molar teeth. BMC Oral Health 2024, 24, 1524. [Google Scholar] [CrossRef]
- Rexhepi, I.; Santilli, M.; D’Addazio, G.; Tafuri, G.; Manciocchi, E.; Caputi, S.; Sinjari, B. Clinical Applications and Mechanical Properties of CAD-CAM Materials in Restorative and Prosthetic Dentistry: A Systematic Review. J. Funct. Biomater. 2023, 14, 431. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.A.; Jasim, H.H.; El Ghoul, W.A.; Vervack, V.; Słoniewski, J. Comparative evaluation of bilayered and monolithic endocrowns: Fracture resistance, failure mode, and stress distribution. J. Mech. Behav. Biomed. Mater. 2025, 168, 107033. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, E.T.P.; Yamaguchi, S.; Coelho, P.G.; Lopes, A.C.O.; Lee, C.; Bonfante, G.; Benalcázar Jalkh, E.B.; de Araujo-Júnior, E.N.S.; Bonfante, E.A. Survival of implant-supported resin-matrix ceramic crowns: In silico and fatigue analyses. Dent. Mater. 2021, 37, 523–533. [Google Scholar] [CrossRef]
- Sorrentino, R.; Triulzio, C.; Tricarico, M.G.; Bonadeo, G.; Gherlone, E.F.; Ferrari, M. In vitro analysis of the fracture resistance of CAD–CAM monolithic zirconia molar crowns with different occlusal thickness. J. Mech. Behav. Biomed. Mater. 2016, 61, 328–333. [Google Scholar] [CrossRef]




| Hybrid Ceramic | Composition | Manufacturer |
|---|---|---|
| GC Cerasmart | Resin matrix (29% Wt): Bis-MEPP, UDMA, dimethacrylate Inorganic filler (71% Wt): silica, barium glass | GC Corp., Tokyo, Japan |
| VITA Enamic | Resin matrix (14% Wt): UDMA, TEGDMA Inorganic filler (86% Wt): Feldspathic ceramic network (Al2O3, Na2O, SiO2, B2O3, K2O, CaO, ZrO2). | Vita-Zahnfabrik, Bad Sackingen, Germany |
| Type of Test | FC-EN (n = 20) | FC-CS (n = 20) | CC-EN (n = 20) | CC-CS (n = 20) | p-Value |
|---|---|---|---|---|---|
| Fracture Load [N] | 1699.6 ± 80.2 a | 1671.3 ± 53.6 a | 1922 ± 91.5 b | 1998.5 ± 82.3 b | (<0.001 *) |
| Margin adaptation [µm] | 64.8 ± 4.4 a | 80.7 ± 5.1 b | 62.7 ± 6.1 a | 78.4 ± 5.1 b | (<0.001 *) |
| Failure Types | |||||
| Failure Type I & II | 8 (40%) | 13 (65%) | 13 (65%) | 17 (85%) | (0.032) |
| Failure Type III & IV | 12 (60%) | 7 (35%) | 7 (35%) | 3 (15%) | |
| Type of Test | FC (n = 40) | CC (n = 40) | p-Value |
|---|---|---|---|
| Fracture load (N) | 1685.4 ± 68.8 | 1960.3 ± 94.2 | <0.001 * |
| Margin adaptation [µm] | 72.7 ± 9.3 | 70.5 ± 9.7 | 0.363 |
| Failure Types | |||
| Type I &II | 21 (52.5%) | 30 (75%) | 0.036 |
| Type III&IV | 19 (47.5%) | 10 (25%) | |
| Type of Test | EN (n = 40) | CS (n = 40) | p-Value |
|---|---|---|---|
| Fracture load (N) | 1810.8 ± 141.0 | 1834.9 ± 179.3 | 0.567 |
| Margin adaptation [µm] | 63.8 ± 5.4 | 79.5 ± 5.2 | <0.001 * |
| Failure Types | |||
| Type I & II | 21 (52.5%) | 30 (75%) | 0.036 |
| Type III & IV | 19 (47.5%) | 10 (25%) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshehri, A. Influence of Cusp Coverage Design and Hybrid Resin–Ceramic Materials on the Biomechanical Performance of Partial Coverage Restorations. J. Funct. Biomater. 2025, 16, 394. https://doi.org/10.3390/jfb16110394
Alshehri A. Influence of Cusp Coverage Design and Hybrid Resin–Ceramic Materials on the Biomechanical Performance of Partial Coverage Restorations. Journal of Functional Biomaterials. 2025; 16(11):394. https://doi.org/10.3390/jfb16110394
Chicago/Turabian StyleAlshehri, Abdullah. 2025. "Influence of Cusp Coverage Design and Hybrid Resin–Ceramic Materials on the Biomechanical Performance of Partial Coverage Restorations" Journal of Functional Biomaterials 16, no. 11: 394. https://doi.org/10.3390/jfb16110394
APA StyleAlshehri, A. (2025). Influence of Cusp Coverage Design and Hybrid Resin–Ceramic Materials on the Biomechanical Performance of Partial Coverage Restorations. Journal of Functional Biomaterials, 16(11), 394. https://doi.org/10.3390/jfb16110394

