Photodynamic Therapy Using IR-783 Liposomes for Advanced Tongue and Breast Cancers in Humans
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Study Design and Patients
2.3. Preparation of Heptamethine Cyanine Liposomes
2.4. Cell Culture
2.5. Proliferation Measurement
2.6. MTT Assay
2.7. IR-783 Liposome Therapeutic Intervention
2.8. PDT for Tongue Cancer
2.9. PDT for Breast Cancer
2.10. Statistical Analysis
3. Results
3.1. T Physicochemical Characteristics of HMC Liposomes
3.2. Inhibitory Effect of IR-783 Liposome Treatment on Cell Proliferation
3.3. PDT Using IR-783 Liposome for the Patient with Tongue Cancer
3.4. PDT Using IR-783 Liposome for the Patient with Breast Cancer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klement, R.J. Cancer as a global health crisis with deep evolutionary roots. Glob. Transit. 2024, 6, 45–65. [Google Scholar] [CrossRef]
- Khan, S.U.; Fatima, K.; Aisha, S.; Malik, F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun. Signal 2024, 22, 109. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.C.; Nguyen, V.N.; Choi, Y.; Lee, S.; Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 2021, 121, 13454–13619. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Hayashi, N.; Tanaka, M.; Kubota, E.; Yano, S.; Joh, T. Tumor affinity photosensitizers for photodynamic therapy. J. Jpn. Soc. Laser Surg. Med. 2015, 36, 159–165. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, L.; Zhen, W.; Li, S.; Jiang, X. Generation of singlet oxygen via iron-dependent lipid peroxidation and its role in Ferroptosis. Fundam. Res. 2022, 2, 66–73. [Google Scholar] [CrossRef]
- Kojima, Y.; Tanaka, M.; Sasaki, M.; Ozeki, K.; Shimura, T.; Kubota, E.; Kataoka, H. Induction of ferroptosis by photodynamic therapy and enhancement of antitumor effect with ferroptosis inducers. J. Gastroenterol. 2024, 59, 81–94. [Google Scholar] [CrossRef]
- Chang, Q.; Wang, P.; Zeng, Q.; Wang, X. A review on ferroptosis and photodynamic therapy synergism: Enhancing anticancer treatment. Heliyon 2024, 10, e28942. [Google Scholar] [CrossRef]
- Tan, L.; Shen, X.; He, Z.; Lu, Y. The role of photodynamic therapy in triggering cell death and facilitating antitumor immunology. Front. Oncol. 2022, 12, 863107. [Google Scholar] [CrossRef]
- Chou, W.; Sun, T.; Peng, N.; Wang, Z.; Chen, D.; Qiu, H.; Zhao, H. Photodynamic therapy-induced anti-tumor immunity: Influence factors and synergistic enhancement strategies. Pharmaceutics 2023, 15, 2617. [Google Scholar] [CrossRef]
- Aebisher, D.; Przygórzewska, A.; Bartusik-Aebisher, D. The latest look at PDT and immune checkpoints. Curr. Issues Mol. Biol. 2024, 46, 7239–7257. [Google Scholar] [CrossRef]
- Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 2005, 5, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Maugeri-Saccà, M.; Vigneri, P.; De Maria, R. Cancer stem cells and chemosensitivity. Clin. Cancer Res. 2011, 17, 4942–4947. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, G.J.; Saya, H. Therapeutic strategies targeting cancer stem cells. Cancer Sci. 2016, 107, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Overchuk, M.; Weersink, R.A.; Wilson, B.C.; Zheng, G. Photodynamic and photothermal therapies: Synergy opportunities for nanomedicine. ACS Nano 2023, 17, 7979–8003. [Google Scholar] [CrossRef]
- Shi, C.; Wu, J.B.; Pan, D. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. J. Biomed. Opt. 2016, 21, 50901. [Google Scholar] [CrossRef]
- Yorozu, K.; Kaibori, M.; Kimura, S.; Ichikawa, M.; Matsui, K.; Kaneshige, S.; Kobayashi, M.; Jimbo, D.; Torikai, Y.; Fukuzawa, Y.; et al. Experience with photodynamic therapy using indocyanine green liposomes for refractory cancer. J. Pers. Med. 2022, 12, 1039. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, W.; Zhang, Q.; Huang, J.; Hu, C.; Liu, Y.; Wang, Q.; Zhou, M.; Lai, W.; Sheng, F.; et al. Dynamin-related protein 1-mediated mitochondrial fission contributes to IR-783-induced apoptosis in human breast cancer cells. J. Cell. Mol. Med. 2018, 22, 4474–4485. [Google Scholar] [CrossRef]
- Li, P.; Liu, Y.; Liu, W.; Li, G.; Tang, Q.; Zhang, Q.; Leng, F.; Sheng, F.; Hu, C.; Lai, W.; et al. IR-783 inhibits breast cancer cell proliferation and migration by inducing mitochondrial fission. Int. J. Oncol. 2019, 55, 415–424. [Google Scholar] [CrossRef]
- Okumura, M.; Ichihara, H.; Matsumoto, Y. Hybrid liposomes showing enhanced accumulation in tumors as theranostic agents in the orthotopic graft model mouse of colorectal cancer. Drug Deliv. 2018, 25, 1192–1199. [Google Scholar] [CrossRef]
- Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46 Pt 1, 6387–6392. [Google Scholar]
- Islam, W.; Kimura, S.; Islam, R.; Harada, A.; Ono, K.; Fang, J.; Niidome, T.; Sawa, T.; Maeda, H. EPR-effect enhancers strongly potentiate tumor-targeted delivery of nanomedicines to advanced cancers: Further extension to enhancement of the therapeutic effect. J. Pers. Med. 2021, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H. The 35th anniversary of the discovery of EPR effect: A new wave of nanomedicines for tumor-targeted drug delivery-Personal remarks and future prospects. J. Pers. Med. 2021, 11, 229. [Google Scholar] [CrossRef] [PubMed]
- James, N.S.; Chen, Y.; Joshi, P.; Ohulchanskyy, T.Y.; Ethirajan, M.; Henary, M.; Strekowsk, L.; Pandey, R.K. Evaluation of polymethine dyes as potential probes for near infrared fluorescence imaging of tumors: Part—1. Theranostics 2013, 3, 692–702. [Google Scholar] [CrossRef]
- Shinoda, K.; Suganami, A.; Moriya, Y.; Yamashita, M.; Tanaka, T.; Suzuki, A.S.; Suito, H.; Akutsu, Y.; Saito, K.; Shinozaki, Y.; et al. Indocyanine green conjugated phototheranostic nanoparticle for photodiagnosis and photodynamic therapy. Photodiagn. Photodyn. Ther. 2022, 39, 103041. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Zhou, L.; Lu, J.; Wang, Y.; Liu, C.; You, L.; Guo, J. Stroma-targeting therapy in pancreatic cancer: One coin with two sides? Front. Oncol. 2020, 10, 576399. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Li, H.; Yang, M.; Li, X.; Gao, J.; Yuan, Z. IR783 Encapsulated in TR-conjugated liposomes for enhancing NIR imaging-guided photothermal and photodynamic therapy. ChemistrySelect 2022, 7, e202202560. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, P.; Chen, B.; Shi, L.; Long, R.; Wang, S.; Liu, Y. Active-oxygenating hollow Prussian Blue nanosystems loaded with biomacromolecules for photodynamic/photothermal therapy of cancer and alleviating hypoxic tumors. Mater. Des. 2024, 237, 112618. [Google Scholar] [CrossRef]
- Park, Y.; Park, M.H.; Hyun, H. Structure-inherent tumor-targeted IR-783 for near-infrared fluorescence-guided photothermal therapy. Int. J. Mol. Sci. 2024, 25, 5309. [Google Scholar] [CrossRef]
- Zhang, L.; Yi, H.; Song, J.; Huang, J.; Yang, K.; Tan, B.; Wang, D.; Yang, N.; Wang, Z.; Li, X. Mitochondria-targeted and ultrasound-activated nanodroplets for enhanced deep-penetration sonodynamic cancer therapy. ACS Appl. Mater. Interfaces 2019, 11, 9355–9366. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Deng, Z.; Pan, M.; Liu, X.; Wu, J.; Yan, F.; Zheng, H. IR-780 dye as a sonosensitizer for sonodynamic therapy of breast tumor. Sci. Rep. 2016, 6, 25968. [Google Scholar] [CrossRef]
Sample | Diameter (nm) | Zeta Potential (mV) |
---|---|---|
ICG | N.D. | −33.9 ± 3.46 |
IR-783 | N.D. | −18.8 ± 3.57 |
Lipo | 25.8 ± 1.42 | 8.4 ± 0.77 |
ICG Lipo | 20.1 ± 0.83 | −9.0 ± 5.38 |
IR-783 Lipo | 21.8 ± 1.65 | −9.5 ± 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komura, Y.; Kimura, S.; Hirasawa, Y.; Katagiri, T.; Takaura, A.; Yoshida, F.; Fukuro, S.; Muranishi, H.; Imataki, O.; Homma, K. Photodynamic Therapy Using IR-783 Liposomes for Advanced Tongue and Breast Cancers in Humans. J. Funct. Biomater. 2024, 15, 363. https://doi.org/10.3390/jfb15120363
Komura Y, Kimura S, Hirasawa Y, Katagiri T, Takaura A, Yoshida F, Fukuro S, Muranishi H, Imataki O, Homma K. Photodynamic Therapy Using IR-783 Liposomes for Advanced Tongue and Breast Cancers in Humans. Journal of Functional Biomaterials. 2024; 15(12):363. https://doi.org/10.3390/jfb15120363
Chicago/Turabian StyleKomura, Yasuo, Shintarou Kimura, Yumi Hirasawa, Tomoko Katagiri, Ayana Takaura, Fumika Yoshida, Saki Fukuro, Hiromi Muranishi, Osamu Imataki, and Koichiro Homma. 2024. "Photodynamic Therapy Using IR-783 Liposomes for Advanced Tongue and Breast Cancers in Humans" Journal of Functional Biomaterials 15, no. 12: 363. https://doi.org/10.3390/jfb15120363
APA StyleKomura, Y., Kimura, S., Hirasawa, Y., Katagiri, T., Takaura, A., Yoshida, F., Fukuro, S., Muranishi, H., Imataki, O., & Homma, K. (2024). Photodynamic Therapy Using IR-783 Liposomes for Advanced Tongue and Breast Cancers in Humans. Journal of Functional Biomaterials, 15(12), 363. https://doi.org/10.3390/jfb15120363