Synthesis and Characterization of Dental Nanocomposite Resins Reinforced with Dual Organomodified Silica/Clay Nanofiller Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Uncured Dental Composite Pastes
2.3. Measurements
2.3.1. Structural Characterization of the Experimental Dental Resins
2.3.2. Setting Contraction Kinetics
2.3.3. Degree of Conversion
2.3.4. Mechanical Properties
2.3.5. Water Sorption and Solubility
2.3.6. Statistical Analysis
3. Results and Discussion
3.1. Limitations of Research
3.2. Morphological Characterization of the Prepared Materials
3.3. Polymerization Reaction Kinetics
3.4. Water Sorption and Solubility
3.5. Polymerization Shrinkaze Kinetics
3.6. Flexural Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, L.; Ali, M.; Agrissais, M.; Mulligan, S.; Koh, L.; Martin, N. A Comparative Life Cycle Assessment of Dental Restorative Materials. Dent. Mater. 2023, 39, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Fugolin, A.P.; Pfeifer, C.S. Engineering a New Generation of Thermoset Self-Healing Polymers Based on Intrinsic Approaches. JADA Found. Sci. 2022, 1, 100014. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Aregawi, W.; Chen, R.; Zhang, L.; Wang, Y.; Fok, A.S.L. Accelerated Fatigue Model for Predicting Composite Restoration Failure. J. Dent. Res. 2022, 101, 1606–1612. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Chen, C.; Chen, B.; Shen, J.; Zhang, H.; Xie, H. Effects of Hydrothermal Aging, Thermal Cycling, and Water Storage on the Mechanical Properties of a Machinable Resin-Based Composite Containing Nano-zirconia Fillers. J. Mech. Behav. Biomed. Mater. 2020, 102, 103522. [Google Scholar] [CrossRef]
- Yang, J.; Shen, J.; Wu, X.; He, F.; Xie, H.; Chen, C. Effects of Nano-zirconia Fillers Conditioned with Phosphate Ester Monomers on the Conversion and Mechanical Properties of Bis-GMA-and UDMA-based Resin Composites. J. Dent. 2020, 94, 103306. [Google Scholar] [CrossRef]
- Yang, D.L.; Sun, Q.; Niu, H.; Wang, R.L.; Wang, D.; Wang, J.X. The Properties of Dental Resin Composites Reinforced with Silica Colloidal Nanoparticle Clusters: Effects of Heat Treatment and Filler Composition. Compos. Part B 2020, 186, 107791. [Google Scholar] [CrossRef]
- Cho, K.; Rajan, G.; Farrar, P.; Prentice, L.; Prusty, B.G. Dental Resin Composites: A Review on Materials to Product Realizations. Compos. Part B 2022, 230, 109495. [Google Scholar] [CrossRef]
- Lin, G.S.S.; Cher, C.Y.; Cheah, K.K.; Noorani, T.Y.; Ismail, N.H.; Ghani, N.R.N.A. Novel Dental Composite Resin Derived from Rice Husk Natural Biowaste: A Systematic Review and Recommendation for Future Advancement. J. Esthet. Restor. Dent. 2022, 34, 503–511. [Google Scholar] [CrossRef]
- Moro, B.L.P.; Michou, S.; Cenci, M.S.; Mendes, F.M.; Ekstrand, K.R. Secondary Caries Detection and Treatment Decision According to Two Criteria and the Impact of Three-Dimensional Intraoral Scanner on Gap Evaluation. Caries Res. 2023, 57, 141–151. [Google Scholar] [CrossRef]
- Chen, L.; Suh, B.I.; Yang, J. Antibacterial Dental Restorative Materials: A Review. Am. J. Dent. 2018, 31, 6B–12B. [Google Scholar]
- Łukomska-Szymańska, M.; Zarzycka, B.; Grzegorczyk, J.; Sokołowski, K.; Półtorak, K.; Sokołowski, J.; Łapińska, B. Antibacterial Properties of Calcium Fluoride-Based Composite Materials: In Vitro Study. Biomed Res. Int. 2016, 2016, 1048320. [Google Scholar] [CrossRef] [PubMed]
- Boaro, L.C.C.; Campos, L.M.; Varca, G.H.C.; dos Santos, T.M.R.; Marques, P.A.; Sugii, M.M.; Saldanha, N.R.; Cogo-Müller, K.; Brandt, W.C.; Braga, R.R.; et al. Antibacterial Resin-Based Composite Containing Chlorhexidine for Dental Applications. Dent. Mater. 2019, 35, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.C.; Hu, W.; Chung, K.-H.; Larsen, R.; Jensen, S.; Cao, D.; Gaviria, L.; Ong, J.L.; Whang, K.; Eiampongpaiboon, T. Reactions: Antibacterial and Bioactive Dental Restorative Materials: Do They Really Work? Am. J. Dent. 2018, 31, 32B–36B. [Google Scholar] [PubMed]
- Lapinska, B.; Szram, A.; Zarzycka, B.; Grzegorczyk, J.; Hardan, L.; Sokolowski, J.; Lukomska-Szymanska, M. An In Vitro Study on the Antimicrobial Properties of Essential Oil Modified Resin Composite against Oral Pathogens. Materials 2020, 13, 4383. [Google Scholar] [CrossRef]
- Butler, J.; Handy, R.D.; Upton, M.; Besinis, A. Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS Nano 2023, 17, 7064–7092. [Google Scholar] [CrossRef]
- Featherstone, J.D.B. Dental Restorative Materials Containing Quaternary Ammonium Compounds Have Sustained Antibacterial Action. J. Am. Dent. Assoc. 2022, 153, 1114–1120. [Google Scholar] [CrossRef]
- Zhang, J.F.; Wu, R.; Fan, Y.; Liao, S.; Wang, Y.; Wen, Z.T.; Xu, X. Antibacterial Dental Composites with Chlorhexidine and Mesoporous Silica. J. Dent. Res. 2014, 93, 1283–1289. [Google Scholar] [CrossRef]
- Melo, M.; Weir, M.; Passos, V.; Rolim, J.; Lynch, C.; Rodrigues, L.; Xu, H. Human In Situ Study of the Effect of Bis(2-Methacryloyloxyethyl) Dimethylammonium Bromide Immobilized in Dental Composite on Controlling Mature Cariogenic Biofilm. Int. J. Mol. Sci. 2018, 19, 3443. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wu, F.; Zhang, G.; Zhu, S.; Ban, J.; Wang, L. Preparation of a Highly Crosslinked Biosafe Dental Nanocomposite Resin with a Tetrafunctional Methacrylate Quaternary Ammonium Salt Monomer. RSC Adv. 2019, 9, 41616–41627. [Google Scholar] [CrossRef]
- Rechmann, P.; Le, C.Q.; Chaffee, B.W.; Rechmann, B.M.T. Demineralization Prevention with a New Antibacterial Restorative Composite Containing QASi Nanoparticles: An in Situ Study. Clin. Oral Investigi. 2021, 25, 5293–5305. [Google Scholar] [CrossRef]
- Dekel-Steinkeller, M.; Weiss, E.I.; Samovici, T.L.-D.; Abramovitz, I. Antibacterial Performance of Composite Containing Quaternary Ammonium Silica (QASi) Filler–A Preliminary Study. J. Dent. 2022, 123, 104209. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, A.K.; Koulaouzidou, E.A.; Gogos, C.; Achilias, D.S. Synthesis and Characterization of Dental Nanocomposite Resins Filled with Different Clay Nanoparticles. Polymers 2019, 11, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaltsman, N.; Weiss, E.I. Compositions and Medical Devices Comprising Anti-Microbial Particles. EP3675802A4, 27 February 2019. [Google Scholar]
- Zhang, Y.; Chen, Y.; Hu, Y.; Huang, F.; Xiao, Y. Quaternary Ammonium Compounds in Dental Restorative Materials. Dent. Mater. J. 2018, 37, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, K.; Yoshihara, K.; Nagaoka, N.; Makita, Y.; Obika, H.; Okihara, T.; Matsukawa, A.; Yoshida, Y.; Van Meerbeek, B. Rechargeable Anti-Microbial Adhesive Formulation Containing Cetylpyridinium Chloride Montmorillonite. Acta Biomater. 2019, 100, 388–397. [Google Scholar] [CrossRef]
- Lee, M.; Kim, D.; Kim, J.; Oh, J.K.; Castaneda, H.; Kim, J.H. Antimicrobial Activities of Thermoplastic Polyurethane/Clay Nanocomposites against Pathogenic Bacteria. ACS Appl. Bio. Mater. 2020, 3, 6672–6679. [Google Scholar] [CrossRef]
- Niu, H.; Yang, D.-L.; Fu, J.-W.; Gao, T.; Wang, J.-X. Mechanical Behavior and Reinforcement Mechanism of Nanoparticle Cluster Fillers in Dental Resin Composites: Simulation and Experimental Study. Dent. Mater. 2022, 38, 1801–1811. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, H.A.; Kriven, W.M.; Casanova, H. Development of Mechanical Properties in Dental Resin Composite: Effect of Filler Size and Filler Aggregation State. Mater. Sci. Eng. C 2019, 101, 274–282. [Google Scholar] [CrossRef]
- Karkanis, S.; Nikolaidis, A.K.; Koulaouzidou, E.A.; Achilias, D.S. Effect of Silica Nanoparticles Silanized by Functional/Functional or Functional/Non-Functional Silanes on the Physicochemical and Mechanical Properties of Dental Nanocomposite Resins. Appl. Sci. 2021, 12, 159. [Google Scholar] [CrossRef]
- Nikolaidis, A.K.; Achilias, D.S.; Karayannidis, G.P. Effect of the Type of Organic Modifier on the Polymerization Kinetics and the Properties of Poly(Methyl Methacrylate)/Organomodified Montmorillonite Nanocomposites. Eur. Polym. J. 2012, 48, 240–251. [Google Scholar] [CrossRef]
- Watts, D.; Marouf, A. Optimal Specimen Geometry in Bonded-Disk Shrinkage-Strain Measurements on Light-Cured Biomaterials. Dent. Mater. 2000, 16, 447–451. [Google Scholar] [CrossRef]
- Watts, D. Photo-Polymerization Shrinkage-Stress Kinetics in Resin-Composites: Methods Development. Dent. Mater. 2003, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Al Sunbul, H.; Silikas, N.; Watts, D.C. Polymerization Shrinkage Kinetics and Shrinkage-Stress in Dental Resin-Composites. Dent. Mater. 2016, 32, 998–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueggeberg, F.A.; Hashinger, D.T.; Fairhurst, C.W. Calibration of FTIR Conversion Analysis of Contemporary Dental Resin Composites. Dent. Mater. 1990, 6, 241–249. [Google Scholar] [CrossRef]
- Wilson, K.S.; Zhang, K.; Antonucci, J.M. Systematic Variation of Interfacial Phase Reactivity in Dental Nanocomposites. Biomaterials 2005, 26, 5095–5103. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.S.; Antonucci, J.M. Interphase Structure–Property Relationships in Thermoset Dimethacrylate Nanocomposites. Dent. Mater. 2006, 22, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Halvorson, R.H.; Erickson, R.L.; Davidson, C.L. The Effect of Filler and Silane Content on Conversion of Resin-Based Composite. Dent. Mater. 2003, 19, 327–333. [Google Scholar] [CrossRef]
- Sideridou, I.D.; Karabela, M.M. Effect of the Structure of Silane-Coupling Agent on Dynamic Mechanical Properties of Dental Resin-Nanocomposites. J. Appl. Polym. Sci. 2008, 110, 507–516. [Google Scholar] [CrossRef]
- Gonçalves, F.; Kawano, Y.; Pfeifer, C.; Stansbury, J.W.; Braga, R.R. Influence of BisGMA, TEGDMA, and BisEMA Contents on Viscosity, Conversion, and Flexural Strength of Experimental Resins and Composites. Eur. J. Oral Sci. 2009, 117, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Maddalena, R.; Hall, C.; Hamilton, A. Effect of Silica Particle Size on the Formation of Calcium Silicate Hydrate [C-S-H] Using Thermal Analysis. Thermochim. Acta 2019, 672, 142–149. [Google Scholar] [CrossRef]
- Achilias, D.S. A Review of Modeling of Diffusion Controlled Polymerization Reactions. Macromol. Theory Simul. 2007, 16, 319–347. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Zhao, C.; Bu, W.; Na, H. Preparation and Characterization of Silane-Modified SiO2 Particles Reinforced Resin Composites with Fluorinated Acrylate Polymer. J. Mech. Behav. Biomed. Mater. 2018, 80, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, M.; Liu, F.; Bao, S.; Wu, T.; Jiang, X.; Zhang, Q.; Zhu, M. Investigation on the Physical–Mechanical Properties of Dental Resin Composites Reinforced with Novel Bimodal Silica Nanostructures. Mater. Sci. Eng. C 2015, 50, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Achilias, D.S.; Verros, G.D. Modeling of Diffusion-Controlled Reactions in Free Radical Solution and Bulk Polymerization: Model Validation by DSC Experiments. J. Appl. Polym. Sci. 2010, 116, 1842–1856. [Google Scholar] [CrossRef]
- Verros, G.D.; Achilias, D.S. Modeling Gel Effect in Branched Polymer Systems: Free-Radical Solution Homopolymerization of Vinyl Acetate. J. Appl. Polym. Sci. 2009, 111, 2171–2185. [Google Scholar] [CrossRef]
- Verros, G.D.; Latsos, T.; Achilias, D.S. Development of a Unified Framework for Calculating Molecular Weight Distribution in Diffusion Controlled Free Radical Bulk Homo-Polymerization. Polymer 2005, 46, 539–552. [Google Scholar] [CrossRef]
- De Menezes, L.R.; da Silva, E.O. The Use of Montmorillonite Clays as Reinforcing Fillers for Dental Adhesives. Mater. Res. 2016, 19, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Göhring, T.; Besek, M.; Schmidlin, P. Attritional Wear and Abrasive Surface Alterations of Composite Resin Materials in Vitro. J. Dent. 2002, 30, 119–127. [Google Scholar] [CrossRef]
- ISO 4049:2019; Dentistry-Polymer Based Restorative Materials. ISO: Geneva, Switzerland, 2019; p. 29.
- Janda, R.; Roulet, J.-F.; Latta, M.; Rüttermann, S. Water Sorption and Solubility of Contemporary Resin-Based Filling Materials. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 82, 545–551. [Google Scholar] [CrossRef]
- Al-Shekhli, A.A.R. Solubility of Nanofilled versus Conventional Composites. Pak. Oral Dent. J. 2014, 34, 118–121. [Google Scholar]
- Langalia, A.K.; Pgdhhm, M.; Mds, A.B.; Khamar, M.; Patel, P. Polymerization Shrinkage of Composite Resins: A Review. J. Maedical Dent. Sci. Res. 2015, 2, 23–27. [Google Scholar]
- Satterthwaite, J.D.; Maisuria, A.; Vogel, K.; Watts, D.C. Effect of Resin-Composite Filler Particle Size and Shape on Shrinkage-Stress. Dent. Mater. 2012, 28, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.; Akelah, A.; Qutubuddin, S.; Moet, A. Reduction of Residual Stress in Montmorillonite/Epoxy Compounds. J. Mater. Sci. 1994, 29, 2274–2280. [Google Scholar] [CrossRef]
- Salahuddin, N.; Shehata, M. Polymethylmethacrylate–Montmorillonite Composites: Preparation, Characterization and Properties. Polymer 2001, 42, 8379–8385. [Google Scholar] [CrossRef]
- Yılmaz Atalı, P.; Doğu Kaya, B.; Manav Özen, A.; Tarçın, B.; Şenol, A.A.; Tüter Bayraktar, E.; Korkut, B.; Bilgin Göçmen, G.; Tağtekin, D.; Türkmen, C. Assessment of Micro-Hardness, Degree of Conversion, and Flexural Strength for Single-Shade Universal Resin Composites. Polymers 2022, 14, 4987. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Greener, E.H. The Effect of Resin Formulation on the Degree of Conversion and Mechanical Properties of Dental Restorative Resins. J. Biomed. Mater. Res. 1986, 20, 121–131. [Google Scholar] [CrossRef]
- Wilson, K.S.; Allen, A.J.; Washburn, N.R.; Antonucci, J.M. Interphase Effects in Dental Nanocomposites Investigated by Small-Angle Neutron Scattering. J. Biomed. Mater. Res. Part A 2007, 81, 113–123. [Google Scholar] [CrossRef]
Dental Nanocomposite Resin | S.MPS (wt%) | Nanomer® I.34MN (wt%) | MMT-CTAC (wt%) | S.MMT-CTAC (wt%) |
---|---|---|---|---|
S.MPS 60 | 60 | - | - | - |
S.MPS/Nanomer 55/5 | 55 | 5 | - | - |
S.MPS/Nanomer 50/10 | 50 | 10 | - | - |
S.MPS/Nanomer 40/20 | 40 | 20 | - | - |
S.MPS/Nanomer 30/30 | 30 | 30 | - | - |
S.MPS/CTAC 50/10 | 50 | - | 10 | - |
S.MPS/S.CTAC 50/10 | 50 | - | - | 10 |
Dental Nanocomposite Resin | Si (%) Mean (SD) | Al (%) Mean (SD) | O (%) Mean (SD) |
---|---|---|---|
S.MPS 60 | 46.74 (0.00) | - | 53.26 (0.00) |
S.MPS/Nanomer 55/5 | 46.33 (0.08) | 0.47 (0.09) | 53.20 (0.01) |
S.MPS/Nanomer 50/10 | 46.05 (0.13) | 0.78 (0.15) | 53.16 (0.02) |
S.MPS/Nanomer 40/20 | 44.55 (0.41) | 2.48 (0.46) | 52.97 (0.05) |
S.MPS/Nanomer 30/30 | 43.30 (0.17) | 3.90 (0.19) | 52.80 (0.02) |
S.MPS/CTAC 50/10 | 45.37 (0.28) | 1.56 (0.31) | 53.07 (0.04) |
S.MPS/S.CTAC 50/10 | 45.62 (0.21) | 1.27 (0.24) | 53.11 (0.03) |
Dental Nanocomposite Resin | DC (%) Mean (SD) | Strain (%) Mean (Min, Max) | Sorption, Wsp (μg/mm3) Mean (Min, Max) | Solubility, Wsl (μg/mm3) Mean (Min, Max) |
---|---|---|---|---|
S.MPS 60 | 48.41 (1.94) | 3.51 (3.31, 3.75) a | 27.54 (24.82, 30.37) a,b,g | 6.21 (4.77, 7.18) a,b |
S.MPS/Nanomer 55/5 | 30.34 (2.73) | 2.76 (2.52, 2.93) a | 28.48 (26.84, 30.38) b,c | 6.61 (6.12, 7.20) a,b |
S.MPS/Nanomer 50/10 | 44.89 (0.90) | 2.93 (2.43, 3.19) a | 33.77 (31.16, 38.47) c,d,g | 4.79 (4.59, 4.97) a,b |
S.MPS/Nanomer 40/20 | 43.00 (1.72) | 5.22 (4.20, 6.00) b | 37.07 (30.38, 40.13) d,f | 5.67 (2.55, 9.35) a,b |
S.MPS/Nanomer 30/30 | 37.86 (1.51) | 6.14 (5.09, 7.39) b | 44.97 (41.83, 46.13) e,f | 7.27 (5.48, 10.00) a |
S.MPS/CTAC 50/10 | 32.28 (2.58) | 3.68 (3.40, 3.92) a | 41.12 (40.12, 41.81) f | 5.72 (4.79, 7.05) a,b |
S.MPS/S.CTAC 50/10 | 43.61 (1.31) | 2.63 (2.50, 2.79) a | 31.59 (30.41, 33.39) g | 3.02 (1.62, 4.39) b |
Dental Nanocomposite Resin | Flexural Modulus (GPa) Mean (SD) | Flexural Strength (MPa) Median (IQR) |
---|---|---|
S.MPS 60 | 2.69 (0.43) a,c,d | 39.75 (34.59, 56.09) a |
S.MPS/Nanomer 55/5 | 1.71 (0.41) b,d | 32.66 (32.17, 35.39) a,b |
S.MPS/Nanomer 50/10 | 2.61 (0.46) c,d | 41.04 (32.85, 46.37) a |
S.MPS/Nanomer 40/20 | 2.50 (0.40) d | 37.88 (33.91, 39.39) a |
S.MPS/Nanomer 30/30 | 2.03 (0.38) b,c,d | 32.57 (30.86, 36.10) a,b |
S.MPS/CTAC 50/10 | 1.85 (0.46) b | 33.22 (22.80, 37.97) a,b |
S.MPS/S.CTAC 50/10 | 2.10 (0.50) a,b,c,d | 22.46 (15.12, 28.85) b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saridou, M.; Nikolaidis, A.K.; Koulaouzidou, E.A.; Achilias, D.S. Synthesis and Characterization of Dental Nanocomposite Resins Reinforced with Dual Organomodified Silica/Clay Nanofiller Systems. J. Funct. Biomater. 2023, 14, 405. https://doi.org/10.3390/jfb14080405
Saridou M, Nikolaidis AK, Koulaouzidou EA, Achilias DS. Synthesis and Characterization of Dental Nanocomposite Resins Reinforced with Dual Organomodified Silica/Clay Nanofiller Systems. Journal of Functional Biomaterials. 2023; 14(8):405. https://doi.org/10.3390/jfb14080405
Chicago/Turabian StyleSaridou, Maria, Alexandros K. Nikolaidis, Elisabeth A. Koulaouzidou, and Dimitris S. Achilias. 2023. "Synthesis and Characterization of Dental Nanocomposite Resins Reinforced with Dual Organomodified Silica/Clay Nanofiller Systems" Journal of Functional Biomaterials 14, no. 8: 405. https://doi.org/10.3390/jfb14080405
APA StyleSaridou, M., Nikolaidis, A. K., Koulaouzidou, E. A., & Achilias, D. S. (2023). Synthesis and Characterization of Dental Nanocomposite Resins Reinforced with Dual Organomodified Silica/Clay Nanofiller Systems. Journal of Functional Biomaterials, 14(8), 405. https://doi.org/10.3390/jfb14080405