Proton Conduction via Water Bridges Hydrated in the Collagen Film
Abstract
1. Introduction
2. Samples and Experimental Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kreuer, K.D.; Paddison, S.J.; Spohr, E.; Schuster, M. Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chem. Rev. 2004, 104, 4637–4678. [Google Scholar] [CrossRef] [PubMed]
- Ordinario, D.D.; Phan, L.; Wlkup, W.G., IV; Jocson, J.M.; Karshalev, E.; Hüsken, N.; Gorodetsky, A.A. Bulk protonic conductivity in a cephalopod structural protein. Nat. Chem. 2014, 6, 596–602. [Google Scholar] [CrossRef]
- Matsuo, Y.; Ikeda, H.; Kawabata, T.; Hatori, J.; Oyama, H. Collagen-based fuel cell and its proton transfer. Mat. Sci. Appl. 2017, 8, 747–756. [Google Scholar] [CrossRef][Green Version]
- Freier, E.; Wolf, S.; Gerwert, K. Proton transfer via a transient linear water-molecule chain in a membrane protein. Proc. Natl. Acad. Sci. USA 2011, 108, 11435–11439. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, Y.; Kumasaka, G.; Saito, K.; Ikehata, S. Fabrication of solid-state fuel cell based on DNA film. Solid State Commun. 2005, 133, 61–64. [Google Scholar] [CrossRef]
- Hojo, A.; Matsui, H.; Iwamoto, K.; Yanagimachi, T.; Abdrurakhan, H.; Taniguchi, M.; Kawai, T.; Toyota, N. Hydration effects on the microwave dielectricity in dry poly(dA)-poly(dT) DNA. J. Phys. Soc. Jpn. 2008, 77, 044802. [Google Scholar] [CrossRef]
- Matsui, H.; Toyota, N.; Nagatori, M.; Sakamoto, H.; Mizoguchi, K. Infrared spectroscopic studies on incorporating the effect of metallic ions into a M-DNA double helix. Phys. Rev. B 2009, 79, 235201. [Google Scholar] [CrossRef]
- Matsui, H.; Matsuo, Y.; Ikehata, S. Natural DNA. In DNA Engineering; Mizoguchi, K., Sakamoto, H., Eds.; Pan Stanford Publishing: Singapore, 2017; pp. 43–85. [Google Scholar]
- Zhong, C.; Deng, Y.; Roudsari, A.F.; Kapetanovic, A.; Anantram, M.P.; Rolandi, M. A polysaccharide bioprotonic field-effect transistor. Nat. Commun. 2011, 2, 476. [Google Scholar] [CrossRef]
- Deng, Y.; Josberger, E.; Jin, J.; Rousdari, A.F.; Helms, B.A.; Zhong, C.; Anantram, M.P.; Rolandi, M. H+-type and OH−-type biological protonic semiconductors and complementary devices. Sci. Rep. 2013, 3, 2481. [Google Scholar] [CrossRef]
- Peng, S.; Lal, A.; Luo, D.; Lu, Y. An optically-gated AuNP-DNA protonic transistor. Nanoscale 2017, 9, 6953–6958. [Google Scholar] [CrossRef]
- Kreuer, K.D. Proton-conducting oxides. Annu. Rev. Mater. Res. 2003, 33, 333–359. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, X.; Zhou, H.; Ramados, K.; Adam, S.; Liu, H.; Lee, S.; Shi, J.; Tsuchiya, M.; Fong, D.D.; et al. Strong correlated perovskite fuel cells. Nature 2016, 534, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Matsui, H.; Shimatani, K.; Ikemoto, Y.; Sasaki, T.; Matsuo, Y. Phonon-assisted proton tunneling in the hydrogen-bonded dimeric selenates of Cs3H(SeO4)2. J. Chem. Phys. 2020, 152, 154502. [Google Scholar] [CrossRef]
- Braun, A.; Chen, Q. Experimental neutron scattering evidence for proton polaron in hydrated metal oxide proton conductors. Nat. Commun. 2017, 8, 15830. [Google Scholar] [CrossRef] [PubMed]
- Pavlenko, N.I.; Stasyuk, I.V. The effect of proton interactions on the conductivity behavior in systems with superionic phases. J. Chem. Phys. 2001, 114, 4607–4617. [Google Scholar] [CrossRef]
- Matsui, H.; Ohhata, Y.; Iida, C.; Horii, M.; Tadokoro, M. Observation of quasi-one dimensional proton conductions in molecular porous crystal [CoIII(H2bim)3](TMA)·20H2O. J. Phys. Soc. Jpn. 2010, 79, 103601. [Google Scholar] [CrossRef]
- Matsui, H.; Tadokoro, M. Eigen-like hydrated protons traveling with a local distortion through the water nanotube in new molecular porous crystals {[MIII(H2bim)3](TMA)·20H2O}n (M = Co, Rh, Ru). J. Chem. Phys. 2012, 137, 144503. [Google Scholar] [CrossRef]
- Matsui, H.; Suzuki, Y.; Fukumochi, H.; Tadokoro, M. Defect dynamics of the dipole ordered water chain in a polar nanochannel. J. Phys. Soc. Jpn. 2014, 83, 054708. [Google Scholar] [CrossRef]
- Matsui, H.; Sasaki, T.; Tadokoro, M. Proton conduction inhibited by Xe hydrates in the water nanotube of the molecular porous crystal {{[RuIII(H2bim)3](TMA)}2·mH2O}n. J. Phys. Chem. C 2019, 123, 20413–20419. [Google Scholar] [CrossRef]
- Rich, A.; Crick, F.H.C. The molecular structure of collagen. J. Mol. Biol. 1961, 3, 483–506. [Google Scholar] [CrossRef]
- Bella, J.; Brodsky, B.; Berman, H.M. Hydration structure of a collagen peptide. Structure 1995, 3, 893–906. [Google Scholar] [CrossRef]
- Brodsky, B.; Ramshaw, J.A.M. The collagen triple-helix structure. Matrix Biol. 1997, 15, 545–554. [Google Scholar] [CrossRef]
- Kramer, R.Z.; Bella, J.; Mayville, P.; Brodsky, B.; Merman, H.M. Sequence dependent conformational variations of collagen triple helical structure. Nat. Struct. Biol. 1999, 6, 454–457. [Google Scholar]
- Mohammed, O.F.; Pines, D.; Dreyer, J.; Pines, E.; Nibbering, E.T.J. Sequential proton transfer through water bridges in acid-base reactions. Science 2005, 310, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Fullerton, G.D.; Amurao, M.R. Evidence that collagen and tendon have monolayer ware coverage in the native state. Cell Biol. Int. 2006, 30, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Grdadolnik, J.; Maréchal, Y. Bovin serum albumin observed by infrared spectrometry. I. Methodology, structural investigation, and water uptake. Biopolymers 2001, 62, 40–53. [Google Scholar] [CrossRef]
- Matsuo, Y.; Hatori, J.; Oyama, H. Proton conduction and impedance analysis in submucosa membrane. In Proceedings of the 13th Asian Conference on Solid State Ionics, Sendai, Japan, 17–20 July 2012; Chowdari, B.V.R., Kawamura, J., Mizusaki, J., Amezawa, K., Eds.; World Scientific: Singapore; pp. 334–339. [Google Scholar]
- Boryskina, O.P.; Bolbukh, T.V.; Semenov, M.A.; Gasan, A.I.; Maleev, V.Y. Energies of peptide-peptide and peptide-water hydrogen bonds in collagen: Evidences from infrared spectroscopy, quartz piezogravimetry and differential scanning calorimetry. J. Mol. Struct. 2007, 827, 1–10. [Google Scholar] [CrossRef]
- Vive, F.F.; Merzel, F.; Johnson, M.R.; Kearley, G.J. Collagen and component polypeptides: Low frequency and amide vibrations. Chem. Phys. 2009, 355, 141–148. [Google Scholar] [CrossRef]
- Novak, A. Hydrogen bonding in solids correlation of spectroscopic and crystallographic data. In Structure and Bonding; Springer: Berlin/Heidelberg, Germany, 1974; Volume 18, pp. 177–216. [Google Scholar]
- Libowitzky, E. Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals. In Hydrogen Bond Research; Springer: Wien, Austria, 1999; pp. 103–115. [Google Scholar]
- Maréchal, Y. The Hydrogen Bond and the Water Molecule; Elsevier: Oxford, UK, 2007; pp. 195–303. [Google Scholar]
- Petrenko, V.F.; Whitworth, R.W. Physics of Ice; Oxford University Press: Oxford, UK, 2006; pp. 1–35. [Google Scholar]
- Shinyashiki, N.; Sudo, S.; Yagihara, S.; Spanoudaki, A.; Kyritsis, A.; Pissis, P. Relaxation processes of water in the liquid to glassy states of water mixtures studied by broadband dielectric spectroscopy. J. Phys. Condens. Mater 2007, 19, 205113. [Google Scholar] [CrossRef]
- Segev, Y.K.; Popov, I.; Solomonov, I.; Sagit, I.; Feldman, Y. Dielectric relaxation of hydration water in native collagen fibrils. J. Phys. Chem. B 2017, 121, 5340–5346. [Google Scholar] [CrossRef]
- Bella, J.; Eaton, M.; Brodsky, B.; Berman, H.M. Crystal and molecular structure of a collagen-like peptide at 1.9 Å resolution. Science 1994, 266, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, K.; Hongo, C.; Fukushima, R.; Wu, G.; Narita, H.; Noguchi, K.; Tanaka, Y.; Nishino, N. Crystal structure of collagen model peptides with Pro-Hyp-Gly repeating sequence at 1.26 Å resolution: Implications for proline ring puckering. Biopolymers 2004, 76, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Kramer, R.Z.; Vitagliano, L.; Bella, J.; Berisio, R.; Mazzarella, L.; Brodsky, B.; Zagari, A.; Berman, H.M. X-ray crystallographic determination of a collagen-like peptide with the repeating sequence (Pro-Pro-Gly). J. Mol. Biol. 1998, 280, 623–638. [Google Scholar] [CrossRef]
- Kramer, R.Z.; Venugopal, M.G.; Bella, J.; Mayville, P.; Brodsky, B.; Berman, H.M. Staggered molecular packing in crystals of a collagen-like peptide with a single charged pair. J. Mol. Biol. 2000, 301, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
- Kramer, R.Z.; Bella, J.; Brodsky, B.; Berman, H.M. The crystal and molecular structure of a collagen-like peptide with a biologically relevant sequence. J. Mol. Biol. 2001, 311, 131–147. [Google Scholar] [CrossRef]
- Tadokoro, M.; Ohhara, T.; Ohhata, Y.; Suda, T.; Miyasato, Y.; Yamada, T.; Kikuchi, T.; Tanaka, I.; Kurihara, K.; Oguni, M.; et al. Anomalous water molecules and mechanistic effects of water nanotube clusters confined to molecular porous crystals. J. Phys. Chem. B 2010, 114, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Eigen, M.; Maeyer, L.D. Self-dissociation and protonic charge transport in water and ice. Proc. Roy. Soc. London A 1958, 247, 505–533. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsui, H.; Matsuo, Y. Proton Conduction via Water Bridges Hydrated in the Collagen Film. J. Funct. Biomater. 2020, 11, 61. https://doi.org/10.3390/jfb11030061
Matsui H, Matsuo Y. Proton Conduction via Water Bridges Hydrated in the Collagen Film. Journal of Functional Biomaterials. 2020; 11(3):61. https://doi.org/10.3390/jfb11030061
Chicago/Turabian StyleMatsui, Hiroshi, and Yasumitsu Matsuo. 2020. "Proton Conduction via Water Bridges Hydrated in the Collagen Film" Journal of Functional Biomaterials 11, no. 3: 61. https://doi.org/10.3390/jfb11030061
APA StyleMatsui, H., & Matsuo, Y. (2020). Proton Conduction via Water Bridges Hydrated in the Collagen Film. Journal of Functional Biomaterials, 11(3), 61. https://doi.org/10.3390/jfb11030061