Is L2 Learners’ Metaphorical Competence Essentially Cognitive, Linguistic, or Personal?—A Meta-Analysis
Abstract
1. Introduction
- Cognitive factors encompass general mental abilities (e.g., fluid intelligence, verbal intelligence) and preferred thinking styles (e.g., holistic vs. analytic, field-dependent vs. field-independent).
- Linguistic factors subsume L2 proficiency indicators (vocabulary breadth/depth, reading comprehension, writing ability, overall proficiency) and L1 metaphorical competence.
- Personal factors include biologically or socially anchored individual-difference variables (gender, personality traits such as introversion/extroversion). Motivation, affect, or identity—although acknowledged as potentially relevant—were not included because (a) there are no empirical research in the metaphor literature or (b) their conceptual overlap with cognitive factors (e.g., self-regulation) would inflate heterogeneity.
2. Literature Review: Variables That May Impact L2 Learners’ Metaphorical Competence
2.1. Cognitive Variables
2.2. Linguistic Variables
2.3. Personal Variables
3. Research Objectives
- (1)
- What are the comparative effect sizes of cognitive, linguistic, and personal factors on L2 metaphorical competence?
- (2)
- To what extent do these factors collectively and differentially determine L2 learners’ metaphorical competence across receptive and productive domains?
- (3)
- What potential moderators (e.g., L1 conceptual knowledge, proficiency level, measurement tools) explain the observed heterogeneity across studies?
4. Methodology
4.1. Article Identification Process
4.2. Eligibility Criteria
- Topics of research: studies aimed at exploring metaphors or metaphorical competencies in L2 learning and teaching.
- Type of research: empirical research examining correlational effects between any variable and the metaphorical competence of L2 learners.
- Date of publication: Studies published since 1980 were considered. This starting year was chosen because it marked the publication of “Metaphors We Live By”, signaling a cognitive shift in metaphor conceptualization.
- Language of publication: Studies in English and Chinese were included to capture research published in the predominant language for academia as well as literature from the authors’ native language, given these two languages’ wide global usage and large speaker bases.
- Forms of publication: original research paper, review paper, degree thesis, book chapter, and book.
- Research methods: studies presenting sufficient statistical information about the data (e.g., sample size; correlation r, t, or p-value) to calculate an average effect size.
- Exclusion criteria were as follows:
- Studies that were not written in English or Chinese.
- Studies for which no full-text publication was available. Example: A study on developmental connections among L1 conceptual transfer competence, metaphoric competence, and English proficiency (Shi 2012).
- Studies focusing on L1 language learning rather than L2 language learning; for example: metaphor processing in middle childhood and at the transition to early adolescence: the role of chronological age, mental age, and verbal intelligence (Deckert et al. 2019).
- Studies that focused on metaphors/conceptual metaphors without directly referring to language learning; for example: Metaphorical Expressions and Culture: An Indirect Link (Deignan 2003).
- Studies that partly address metaphor in second language but primarily deal with figurative language in general. Example: Figurative Thinking and Foreign Language Learning (Littlemore and Low 2006a).
- Studies that are either theoretical or speculative. Example: Metaphor and Second Language Learning: The State of the Field (Hoang 2014).
- Studies reporting results from regression modeling from which zero-order correlation cannot be sufficiently derived. Example: Fluency or Similarities? Cognitive Abilities that Contribute to Creative Metaphor Generation (Kasirer and Mashal 2018).
4.3. Coding Process
4.4. Publication Bias
4.5. Computation of Effect Size
4.6. Heterogeneity Test
5. Results
5.1. Overall Effects for All the Variables
5.2. Summary Effects for the Three Categories of Variables
5.3. Moderator Variables Within the Cognitive Subgroup
5.4. Moderator Variables Within the Linguistic Subgroup
5.5. Moderator Variables Within the Personal Subgroup
6. Discussion
6.1. Linguistic Factors as Primary Enablers
6.2. Moderate Role of Cognitive Dimensions
6.3. Personal Factors as Socially Mediated Micro-Processes
6.4. Moderator Variable Insights
7. Conclusions
7.1. Pedagogical Implications
7.2. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B. Data Entry Form
Number | Study Name | Outcome | Data Format | A Mean | A Std-Dev | A Sample Size | B Mean | B Std-Dev | B Sample Size | Effect Direction | Correlation | Std Err | Fisher’s Z | Std Err |
1 | Chen 20141 | cognitive | Independent groups (means, SDs) | 80.07 | 14.05 | 26 | 87.75 | 10.32 | 14 | 3 | 0.273243 | 0.143552 | 0.280365 | 0.155135 |
2 | Chen 20142 | cognitive | Independent groups (means, SDs) | 87 | 12.25 | 26 | 84.67 | 23.94 | 14 | 3 | 6.46 × 10−2 | 0.15729 | 6.47 × 10−2 | 0.157949 |
3 | Chen 20143 | cognitive | Independent groups (means, SDs) | 85.07 | 15.02 | 26 | 88.38 | 9.97 | 14 | 3 | 0.116099 | 0.155456 | 0.116625 | 0.15758 |
4 | Chen 20144 | cognitive | Independent groups (means, SDs) | 97.75 | 14.09 | 26 | 79.67 | 9.24 | 14 | 3 | 0.56352 | 9.90 × 10−2 | 0.637976 | 0.145019 |
5 | Hashemian 20181 | cognitive | Independent groups (means, SDs) | 17.03 | 1.45 | 42 | 17.37 | 0.91 | 48 | 3 | 0.140833 | 0.102805 | 0.141775 | 0.104885 |
6 | Hashemian 20182 | cognitive | Independent groups (means, SDs) | 16.97 | 1.25 | 54 | 17.58 | 1.03 | 36 | 3 | 0.247974 | 9.74 × 10−2 | 0.253253 | 0.103776 |
7 | Kenett 2018 | cognitive | Independent groups (means, SDs) | 0.86 | 0.06 | 32 | 0.83 | 0.06 | 32 | 3 | 0.242536 | 0.115904 | 0.247466 | 0.123148 |
8 | Littemore 20105 | cognitive | Independent groups (means, SDs) | 2.83 | 0.34 | 46 | 2.82 | 0.32 | 36 | 3 | 1.50 × 10−2 | 0.110401 | 1.50 × 10−2 | 0.110425 |
9 | Littemore 20106 | cognitive | Independent groups (means, SDs) | 1.37 | 0.51 | 46 | 1.35 | 0.42 | 36 | 3 | 2.10 × 10−2 | 0.110371 | 2.10 × 10−2 | 0.110419 |
10 | Littemore 20107 | cognitive | Independent groups (means, SDs) | 3.03 | 0.43 | 46 | 3.01 | 0.52 | 36 | 3 | 2.10 × 10−2 | 0.11037 | 2.10 × 10−2 | 0.110419 |
11 | Littemore 20108 | cognitive | Independent groups (means, SDs) | 6.23 | 2.18 | 46 | 6.79 | 2.64 | 36 | 3 | 0.115399 | 0.108598 | 0.115916 | 0.110063 |
12 | Yuan 20200 | cognitive | Independent groups (means, SDs) | 5.03 | 3.79 | 58 | 5.8 | 4.45 | 58 | 3 | 9.27 × 10−2 | 0.091851 | 9.30 × 10−2 | 9.26 × 10−2 |
13 | Yuan 202011 | cognitive | Independent groups (means, SDs) | 7.55 | 5.62 | 58 | 7.65 | 5.63 | 58 | 3 | 8.89 × 10−3 | 9.28 × 10−2 | 8.89 × 10−3 | 9.28 × 10−2 |
14 | Yuan 202012 | cognitive | Independent groups (means, SDs) | 14.72 | 10.65 | 58 | 15.75 | 11.62 | 58 | 3 | 4.62 × 10−2 | 9.26 × 10−2 | 4.62 × 10−2 | 9.28 × 10−2 |
15 | Yuan 20205 | cognitive | Independent groups (means, SDs) | 3.87 | 20.6 | 58 | 4.27 | 2.07 | 58 | 3 | 1.37 × 10−2 | 0.092826 | 1.37 × 10−2 | 9.28 × 10−2 |
16 | Yuan 20206 | cognitive | Independent groups (means, SDs) | 10.37 | 5.57 | 58 | 11.7 | 6.19 | 58 | 3 | 0.112225 | 9.14 × 10−2 | 0.1127 | 9.26 × 10−2 |
17 | Yuan 20207 | cognitive | Independent groups (means, SDs) | 12.95 | 6.9 | 58 | 14.55 | 7.31 | 58 | 3 | 0.111844 | 9.14 × 10−2 | 0.112314 | 9.26 × 10−2 |
18 | Yuan 20208 | cognitive | Independent groups (means, SDs) | 27.18 | 14.25 | 58 | 30.52 | 15.35 | 58 | 3 | 0.11205 | 9.14 × 10−2 | 0.112522 | 9.26 × 10−2 |
19 | Yuan 20209 | cognitive | Independent groups (means, SDs) | 2.13 | 1.48 | 58 | 2.3 | 1.73 | 58 | 3 | 5.27 × 10−2 | 0.092525 | 5.28 × 10−2 | 9.28 × 10−2 |
20 | Cai 20188 | cognitive | Corr, N | 0.423 | 7.46 × 10−2 | 0.45134 | 9.09 × 10−2 | |||||||
21 | Hashemian 2012 | cognitive | Corr, N | 0.277 | 8.32 × 10−2 | 0.28443 | 9.02 × 10−2 | |||||||
22 | Hashemian 2019 | cognitive | Corr, N | 0.36 | 7.85 × 10−2 | 0.376886 | 9.02 × 10−2 | |||||||
23 | Li 20121 | cognitive | Corr, N | 0.545 | 8.86 × 10−2 | 0.611241 | 0.125988 | |||||||
24 | Li 20122 | cognitive | Corr, N | 0.473 | 9.78 × 10−2 | 0.513928 | 0.125988 | |||||||
25 | Li 20123 | cognitive | Corr, N | 0.729 | 5.90 × 10−2 | 0.92659 | 0.125988 | |||||||
26 | Liu 20184 | cognitive | Corr, N | 0.322 | 8.29 × 10−2 | 0.333877 | 9.25 × 10−2 | |||||||
27 | Liu 20185 | cognitive | Corr, N | 0.152 | 9.03 × 10−2 | 0.153187 | 9.25 × 10−2 | |||||||
28 | Liu 20186 | cognitive | Corr, N | 0.133 | 9.08 × 10−2 | 0.133793 | 9.25 × 10−2 | |||||||
29 | Liu 20187 | cognitive | Corr, N | 0.344 | 8.15 × 10−2 | 0.358622 | 9.25 × 10−2 | |||||||
30 | Wang 20131 | cognitive | Corr, N | 0.42 | 0.124162 | 0.447692 | 0.150756 | |||||||
31 | Wang 20132 | cognitive | Corr, N | −0.077 | 0.149862 | ####### | 0.150756 | |||||||
32 | Wang 20133 | cognitive | Corr, N | −0.045 | 0.15045 | ####### | 0.150756 | |||||||
33 | Wang 20134 | cognitive | Corr, N | −0.031 | 0.150611 | ####### | 0.150756 | |||||||
34 | Wang 20135 | cognitive | Corr, N | 0.369 | 0.130229 | 0.387265 | 0.150756 | |||||||
35 | Wang 20136 | cognitive | Corr, N | −0.038 | 0.150538 | ####### | 0.150756 | |||||||
36 | Wang 20162 | cognitive | Corr, N | 0.27 | 7.20 × 10−2 | 0.276864 | 7.76 × 10−2 | |||||||
37 | Wei 20091 | cognitive | Corr, N | 0.342 | 0.126148 | 0.356356 | 0.142857 | |||||||
38 | Wei 20092 | cognitive | Corr, N | 0.331 | 0.127206 | 0.343951 | 0.142857 | |||||||
39 | Wei 20093 | cognitive | Corr, N | 0.267 | 0.132673 | 0.273631 | 0.142857 | |||||||
40 | Wei 20094 | cognitive | Corr, N | 0.367 | 0.123616 | 0.384952 | 0.142857 | |||||||
41 | Wei 20121 | cognitive | Corr, N | 0.701 | 5.48 × 10−2 | 0.869264 | 0.107833 | |||||||
42 | Xu 20121 | cognitive | Corr, N | 0.124 | 0.034682 | 0.124641 | 3.52 × 10−2 | |||||||
43 | Fattahi 20212 | linguistic | Independent groups (means, SDs) | 63.93 | 14.35 | 27 | 84.09 | 12.7 | 23 | 3 | 0.593695 | 8.31 × 10−2 | 0.683353 | 0.128356 |
44 | Galantomos 20182 | linguistic | Independent groups (means, SDs) | 0.32 | 0.09 | 15 | 0.45 | 0.06 | 16 | 3 | 0.649889 | 9.21 × 10−2 | 0.775106 | 0.159518 |
45 | Shi 20121 | linguistic | Independent groups (means, SDs) | 49 | 15.49 | 60 | 66 | 9.47 | 62 | 3 | 0.553476 | 5.78 × 10−2 | 0.623379 | 8.33 × 10−2 |
46 | Shi 20122 | linguistic | Independent groups (means, SDs) | 32 | 17.62 | 60 | 72 | 34.84 | 62 | 3 | 0.584735 | 5.42 × 10−2 | 0.669628 | 8.24 × 10−2 |
47 | Shi 20123 | linguistic | Independent groups (means, SDs) | 81 | 27.78 | 60 | 138 | 36.07 | 62 | 3 | 0.662016 | 4.49 × 10−2 | 0.796395 | 0.080003 |
48 | Suner 20181 | linguistic | Independent groups (means, SDs) | 4.233 | 1.294 | 60 | 0.817 | 0.813 | 60 | 3 | 0.845072 | 2.09 × 10−2 | 1.238656 | 7.32 × 10−2 |
49 | Suner 20182 | linguistic | Independent groups (means, SDs) | 4.65 | 1.505 | 60 | 2.6 | 1.509 | 60 | 3 | 0.5624 | 5.73 × 10−2 | 0.636336 | 8.38 × 10−2 |
50 | Suner 20183 | linguistic | Independent groups (means, SDs) | 3.064 | 1.187 | 60 | 4.35 | 20.9 | 60 | 3 | 4.34 × 10−2 | 0.091072 | 4.34 × 10−2 | 9.12 × 10−2 |
51 | Yuan 20201 | linguistic | Independent groups (means, SDs) | 4.07 | 2.06 | 60 | 2.22 | 1.6 | 60 | 3 | 0.448299 | 6.92 × 10−2 | 0.48257 | 8.66 × 10−2 |
52 | Yuan 20202 | linguistic | Independent groups (means, SDs) | 11.03 | 5.87 | 60 | 5.42 | 4.12 | 60 | 3 | 0.484026 | 6.57 × 10−2 | 0.528229 | 8.58 × 10−2 |
53 | Yuan 20203 | linguistic | Independent groups (means, SDs) | 13.75 | 7.1 | 60 | 7.6 | 5.58 | 60 | 3 | 0.433879 | 7.05 × 10−2 | 0.464665 | 8.69 × 10−2 |
54 | Yuan 20204 | linguistic | Independent groups (means, SDs) | 28.85 | 14.78 | 60 | 15.23 | 11.06 | 60 | 3 | 0.462547 | 6.78 × 10−2 | 0.500546 | 8.63 × 10−2 |
55 | Aleshtar 20141 | linguistic | Corr, N | 0.77 | 7.83 × 10−2 | 1.020328 | 0.19245 | |||||||
56 | Aleshtar 20142 | linguistic | Corr, N | 0.72 | 9.27 × 10−2 | 0.907645 | 0.19245 | |||||||
57 | Aleshtar 20143 | linguistic | Corr, N | 0.782 | 0.051455 | 1.050498 | 0.132453 | |||||||
58 | Arif 2017 | linguistic | Corr, N | 0.602 | 4.04 × 10−2 | 0.696278 | 6.34 × 10−2 | |||||||
59 | Cai 20189 | linguistic | Corr, N | 0.318 | 0.081716 | 0.329421 | 9.09 × 10−2 | |||||||
60 | Deng 20122 | linguistic | Corr, N | 0.481 | 0.110943 | 0.524284 | 0.144338 | |||||||
61 | Deng 20123 | linguistic | Corr, N | 0.212 | 0.13785 | 0.215265 | 0.144338 | |||||||
62 | Deng 20124 | linguistic | Corr, N | 0.435 | 0.117025 | 0.466047 | 0.144338 | |||||||
63 | Deng 20125 | linguistic | Corr, N | 0.39 | 0.122384 | 0.4118 | 0.144338 | |||||||
64 | Dong 20141 | linguistic | Corr, N | −0.056 | 0.132038 | -0.05606 | 0.132453 | |||||||
65 | Dong 20142 | linguistic | Corr, N | −0.111 | 0.130821 | -0.11146 | 0.132453 | |||||||
66 | Dong 20143 | linguistic | Corr, N | −0.145 | 0.129668 | -0.14603 | 0.132453 | |||||||
67 | Dong 20144 | linguistic | Corr, N | 0.865 | 3.33 × 10−2 | 1.312871 | 0.132453 | |||||||
68 | Dong 20145 | linguistic | Corr, N | 0.666 | 7.37 × 10−2 | 0.80352 | 0.132453 | |||||||
69 | Dong 20146 | linguistic | Corr, N | 0.735 | 6.09 × 10−2 | 0.939516 | 0.132453 | |||||||
70 | Han 20200 | linguistic | Corr, N | 0.09 | 0.158831 | 9.02 × 10−2 | 0.160128 | |||||||
71 | Han 20203 | linguistic | Corr, N | 0.355 | 0.139948 | 0.371153 | 0.160128 | |||||||
72 | Han 20204 | linguistic | Corr, N | 0.453 | 0.127268 | 0.488468 | 0.160128 | |||||||
73 | Han 20205 | linguistic | Corr, N | 0.305 | 0.145232 | 0.315023 | 0.160128 | |||||||
74 | Han 20206 | linguistic | Corr, N | 0.367 | 0.138561 | 0.384952 | 0.160128 | |||||||
75 | Han 20207 | linguistic | Corr, N | 0.05 | 0.159728 | 5.00 × 10−2 | 0.160128 | |||||||
76 | Han 20208 | linguistic | Corr, N | 0.258 | 0.149469 | 0.263965 | 0.160128 | |||||||
77 | Han 20209 | linguistic | Corr, N | 0.652 | 9.21 × 10−2 | 0.77877 | 0.160128 | |||||||
78 | Hoang 20151 | linguistic | Corr, N | 0.35 | 4.43 × 10−2 | 0.365444 | 5.04 × 10−2 | |||||||
79 | Hoang 20152 | linguistic | Corr, N | 0.84 | 1.49 × 10−2 | 1.221174 | 5.04 × 10−2 | |||||||
80 | Hoang 20153 | linguistic | Corr, N | −0.07 | 5.02 × 10−2 | ####### | 5.04 × 10−2 | |||||||
81 | Hoang 20154 | linguistic | Corr, N | 0.69 | 2.64 × 10−2 | 0.847956 | 5.04 × 10−2 | |||||||
82 | Kou 20171 | linguistic | Corr, N | 0.537 | 0.132147 | 0.59993 | 0.185695 | |||||||
83 | Kou 20172 | linguistic | Corr, N | 0.425 | 0.152154 | 0.453779 | 0.185695 | |||||||
84 | Leng 20141 | linguistic | Corr, N | 0.517 | 9.70 × 10−2 | 0.572237 | 0.132453 | |||||||
85 | Leng 20142 | linguistic | Corr, N | 0.322 | 0.11872 | 0.333877 | 0.132453 | |||||||
86 | Leng 20143 | linguistic | Corr, N | 0.403 | 0.110942 | 0.427225 | 0.132453 | |||||||
87 | Leng 20144 | linguistic | Corr, N | 0.218 | 0.126159 | 0.221555 | 0.132453 | |||||||
88 | O’Reilly 20170 | linguistic | Corr, N | 0.088 | 8.39 × 10−2 | 8.82 × 10−2 | 8.45 × 10−2 | |||||||
89 | O’Reilly 20171 | linguistic | Corr, N | 0.323 | 7.57 × 10−2 | 0.334993 | 8.45 × 10−2 | |||||||
90 | O’Reilly 201711 | linguistic | Corr, N | 0.108 | 8.35 × 10−2 | 0.108423 | 8.45 × 10−2 | |||||||
91 | O’Reilly 201712 | linguistic | Corr, N | 0.184 | 8.17 × 10−2 | 0.18612 | 8.45 × 10−2 | |||||||
92 | O’Reilly 201713 | linguistic | Corr, N | 0.041 | 8.44 × 10−2 | 4.10 × 10−2 | 8.45 × 10−2 | |||||||
93 | O’Reilly 201714 | linguistic | Corr, N | 0.011 | 8.45 × 10−2 | 1.10 × 10−2 | 8.45 × 10−2 | |||||||
94 | O’Reilly 201715 | linguistic | Corr, N | 0.083 | 8.39 × 10−2 | 8.32 × 10−2 | 8.45 × 10−2 | |||||||
95 | O’Reilly 201716 | linguistic | Corr, N | 0.196 | 8.13 × 10−2 | 0.198569 | 8.45 × 10−2 | |||||||
96 | O’Reilly 201717 | linguistic | Corr, N | 0.259 | 7.88 × 10−2 | 0.265036 | 8.45 × 10−2 | |||||||
97 | O’Reilly 201718 | linguistic | Corr, N | 0.071 | 0.084089 | 7.11 × 10−2 | 8.45 × 10−2 | |||||||
98 | O’Reilly 201719 | linguistic | Corr, N | 0.08 | 8.40 × 10−2 | 8.02 × 10−2 | 8.45 × 10−2 | |||||||
99 | O’Reilly 20172 | linguistic | Corr, N | 0.348 | 7.43 × 10−2 | 0.363166 | 8.45 × 10−2 | |||||||
100 | O’Reilly 201720 | linguistic | Corr, N | 0.055 | 8.43 × 10−2 | 5.51 × 10−2 | 8.45 × 10−2 | |||||||
101 | O’Reilly 201721 | linguistic | Corr, N | 0.179 | 0.081807 | 0.180949 | 8.45 × 10−2 | |||||||
102 | O’Reilly 20173 | linguistic | Corr, N | 0.159 | 8.24 × 10−2 | 0.160361 | 8.45 × 10−2 | |||||||
103 | O’Reilly 20174 | linguistic | Corr, N | 0.526 | 6.11 × 10−2 | 0.584599 | 8.45 × 10−2 | |||||||
104 | O’Reilly 20175 | linguistic | Corr, N | 0.243 | 7.95 × 10−2 | 0.24796 | 8.45 × 10−2 | |||||||
105 | O’Reilly 20176 | linguistic | Corr, N | 0.494 | 6.39 × 10−2 | 0.541338 | 8.45 × 10−2 | |||||||
106 | O’Reilly 20177 | linguistic | Corr, N | 0.299 | 7.70 × 10−2 | 0.308421 | 8.45 × 10−2 | |||||||
107 | O’Reilly 20178 | linguistic | Corr, N | 0.122 | 8.33 × 10−2 | 0.122611 | 8.45 × 10−2 | |||||||
108 | O’Reilly 20179 | linguistic | Corr, N | 0.107 | 0.083548 | 0.107411 | 8.45 × 10−2 | |||||||
109 | Rezaei 20126 | linguistic | Corr, N | 0.844 | 2.66 × 10−2 | 1.234918 | 9.25 × 10−2 | |||||||
110 | Shi 20124 | linguistic | Corr, N | 0.312 | 0.11956 | 0.32276 | 0.132453 | |||||||
111 | Shi 20125 | linguistic | Corr, N | 0.341 | 0.117051 | 0.355224 | 0.132453 | |||||||
112 | Shi 20126 | linguistic | Corr, N | 0.018 | 0.130147 | 0.018002 | 0.130189 | |||||||
113 | Shi 20127 | linguistic | Corr, N | −0.069 | 0.129569 | ####### | 0.130189 | |||||||
114 | Tang 20195 | linguistic | Corr, N | 0.288 | 8.91 × 10−2 | 0.296384 | 9.71 × 10−2 | |||||||
115 | Tang 20196 | linguistic | Corr, N | 0.3 | 0.088387 | 0.30952 | 9.71 × 10−2 | |||||||
116 | Tang 20197 | linguistic | Corr, N | 0.3 | 0.088387 | 0.30952 | 9.71 × 10−2 | |||||||
117 | Tang 20198 | linguistic | Corr, N | 0.12 | 9.57 × 10−2 | 0.120581 | 9.71 × 10−2 | |||||||
118 | Wang 20161 | linguistic | Corr, N | 0.58 | 5.15 × 10−2 | 0.662463 | 7.76 × 10−2 | |||||||
119 | Wang 20201 | linguistic | Corr, N | 0.856 | 2.80 × 10−2 | 1.278183 | 0.104828 | |||||||
120 | Wang 20202 | linguistic | Corr, N | 0.72 | 5.05 × 10−2 | 0.907645 | 0.104828 | |||||||
121 | Wang 20203 | linguistic | Corr, N | 0.698 | 5.38 × 10−2 | 0.86339 | 0.104828 | |||||||
122 | Wang 20204 | linguistic | Corr, N | 0.581 | 6.94 × 10−2 | 0.663971 | 0.104828 | |||||||
123 | Wei 20122 | linguistic | Corr, N | 0.702 | 5.47 × 10−2 | 0.871233 | 0.107833 | |||||||
124 | Xiao 2016 | linguistic | Corr, N | −0.3 | 0.11748 | -0.30952 | 0.129099 | |||||||
125 | Yuan 2014 | linguistic | Corr, N | −0.1 | 0.131129 | -0.10034 | 0.132453 | |||||||
126 | Zhao 20101 | linguistic | Corr, N | 0.367 | 0.101978 | 0.384952 | 0.117851 | |||||||
127 | Zhao 20141 | linguistic | Corr, N | 0.428 | 9.63 × 10−2 | 0.457446 | 0.117851 | |||||||
128 | Zhao 20142 | linguistic | Corr, N | 0.008 | 0.117844 | 8.00 × 10−3 | 0.117851 | |||||||
129 | Zhao 20143 | linguistic | Corr, N | 0.442 | 9.48 × 10−2 | 0.474714 | 0.117851 | |||||||
130 | Fattahi 20211 | personal | Independent groups (means, SDs) | 70.79 | 18.45 | 28 | 76.27 | 14.46 | 22 | 3 | 0.159638 | 0.136936 | 0.161016 | 0.140517 |
131 | Galantomos 20181 | personal | Independent groups (means, SDs) | 0.35 | 0.087 | 14 | 0.42 | 0.09 | 17 | 3 | 0.36567 | 0.150298 | 0.383416 | 0.173497 |
132 | Hashemian 2012b | personal | Independent groups (means, SDs) | 16.43 | 1.77 | 51 | 17.43 | 1.06 | 75 | 3 | 0.332845 | 7.70 × 10−2 | 0.346025 | 8.66 × 10−2 |
133 | Littemore 20101 | personal | Independent groups (means, SDs) | 2.82 | 0.33 | 15 | 2.83 | 0.33 | 67 | 3 | 1.17 × 10−2 | 0.110413 | 1.17 × 10−2 | 0.110428 |
134 | Littemore 20102 | personal | Independent groups (means, SDs) | 1.4 | 0.4 | 15 | 1.35 | 0.48 | 67 | 3 | 4.14 × 10−2 | 0.110195 | 4.14 × 10−2 | 0.110384 |
135 | Littemore 20103 | personal | Independent groups (means, SDs) | 2.94 | 0.53 | 15 | 3.05 | 0.46 | 67 | 3 | 0.089548 | 0.109326 | 8.98 × 10−2 | 0.11021 |
136 | Littemore 20104 | personal | Independent groups (means, SDs) | 6.2 | 2.61 | 15 | 6.54 | 2.36 | 67 | 3 | 5.46 × 10−2 | 0.110021 | 0.054614 | 0.110349 |
137 | Liu 20141 | personal | Independent groups (means, SDs) | 64.6 | 10.1662 | 30 | 64.9 | 11.4119 | 30 | 3 | 1.39 × 10−2 | 0.129068 | 1.39 × 10−2 | 0.129093 |
138 | Liu 20142 | personal | Independent groups (means, SDs) | 24 | 10.5373 | 30 | 18 | 8.9378 | 30 | 3 | 0.293527 | 0.115407 | 0.302421 | 0.126288 |
139 | Liu 20143 | personal | Independent groups (means, SDs) | 32.7 | 13.7997 | 30 | 27.983 | 13.4321 | 30 | 3 | 0.17066 | 0.124423 | 0.172346 | 0.128156 |
140 | Tang 20191 | personal | Independent groups (means, SDs) | 41.13 | 13.679 | 23 | 52.367 | 12.587 | 87 | 3 | 0.335824 | 8.22 × 10−2 | 0.349378 | 9.26 × 10−2 |
141 | Tang 20192 | personal | Independent groups (means, SDs) | 5.957 | 4.193 | 23 | 10.827 | 5.243 | 87 | 3 | 0.365291 | 7.98 × 10−2 | 0.382978 | 9.21 × 10−2 |
142 | Tang 20193 | personal | Independent groups (means, SDs) | 11.391 | 3.564 | 23 | 13.724 | 2.852 | 87 | 3 | 0.30055 | 8.48 × 10−2 | 0.310124 | 9.32 × 10−2 |
143 | Tang 20194 | personal | Independent groups (means, SDs) | 23.782 | 9.94 | 23 | 27.861 | 9.966 | 87 | 3 | 0.164268 | 9.21 × 10−2 | 0.16577 | 9.47 × 10−2 |
144 | Aidinlou 20171 | personal | Corr, N | 0.434 | 0.117151 | 0.464814 | 0.144338 | |||||||
145 | Xu 20122 | personal | Corr, N | 0.14 | 3.45 × 10−2 | 0.140926 | 3.52 × 10−2 | |||||||
146 | Aidinlou 20172 | personal | Corr, N | 0.381 | 0.105223 | 0.401229 | 0.123091 |
References
- Aleshtar, Mahmood Taghi, and Hossein Dowlatabadi. 2014. Metaphoric competence and language proficiency in the same boat. Procedia-Social and Behavioral Sciences 98: 1895–904. [Google Scholar] [CrossRef]
- Arif, Mudhar, and Ihsan H. Abdullah. 2017. The impact of L1 metaphorical comprehension on L2 metaphorical comprehension of Iraqi EFL learners. Advances in Language and Literary Studies 8: 8. [Google Scholar] [CrossRef]
- Azuma, Masako. 2004. Metaphorical Competence in an EFL Context Lexicon of Japanese EFL Students. Ph.D. dissertation, University of Nottingham, Nottingham, UK. [Google Scholar]
- Boers, Frank. 2000. Metaphor awareness and vocabulary retention. Applied Linguistics 21: 553–71. [Google Scholar] [CrossRef]
- Borenstein, Michael, Larry Hedges, and Hannah Rothstein. 2009. Introduction to Meta-Analysis. Chichester: John Wiley and Sons, Ltd. [Google Scholar]
- Castellano-Risco, Irene, and Ana María Piquer-Píriz. 2020. Measuring Secondary-School L2 Learners Vocabulary Knowledge: Metaphorical Competence as Part of General Lexical Competence. In Metaphor in Foreign Language Instruction. Edited by Ana María Piquer-Píriz and Rafael Alejo-González. Berlin: De Gruyter, pp. 199–218. [Google Scholar]
- Charteris-Black, Jonathan. 2002. Second language figurative proficiency: A comparative study of Malay and English. Applied Linguistics 23: 104–33. [Google Scholar] [CrossRef]
- Chen, Ying-Chun, Chih-Ying Lin, and Shu-Li Lin. 2014. EFL learners’ cognitive styles as a factor in the development of metaphoric competence. Journal of Language Teaching and Research 5: 698–707. [Google Scholar] [CrossRef]
- Chiappe, Dan L., and Paula Chiappe. 2007. The role of working memory in metaphor production and comprehension. Journal of Memory and Language 56: 172–88. [Google Scholar] [CrossRef]
- Chomsky, Noam. 1965. Aspects of the Theory of Syntax. Cambridge: MIT Press. [Google Scholar]
- Cohen, Jacob. 1988. Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Mahwah: Erlbaum. [Google Scholar]
- Dabbagh, Ali, and Mahmood Reza Atai. 2022. Exploring cultural conceptualizations and metacultural competence in local EAP textbooks: A semiotic approach. Journal of Asia TEFL 19: 141–62. [Google Scholar] [CrossRef]
- Dabbagh, Ali, and Mohammad Reza Hashemi. 2023. Conceptualizations of gratitude: A comparative analysis of English and Persian dissertation acknowledgements written by Persian authors. Australian Journal of Linguistics 43: 137–57. [Google Scholar] [CrossRef]
- Danesi, Marcel. 1986. The role of metaphor in second language pedagogy. Rassegna Italiana di Linguistica Applicata 18: 1–10. [Google Scholar]
- Danesi, Marcel. 1992. Metaphorical competence in second language acquisition and second language teaching: The neglected dimension. In Georgetown University Round Table on Language and Linguistics. Edited by James E. Alatis. Washington, DC: Georgetown University Press, pp. 489–500. [Google Scholar]
- Danesi, Marcel. 1995. Learning and teaching languages: The role of “conceptual fluency”. International Journal of Applied Linguistics 5: 3–20. [Google Scholar] [CrossRef]
- Danesi, Marcel. 2016. Conceptual fluency in second language teaching: An overview of problems, issues, research findings, and pedagogy. International Journal of Applied Linguistics and English Literature 5: 145–53. [Google Scholar] [CrossRef]
- Deckert, Martina, Michael Schmoeger, Ingrid Schaunig-Busch, and Ulrike Willinger. 2019. Metaphor processing in middle childhood and at the transition to early adolescence: The role of chronological age, mental age, and verbal intelligence. Journal of Child Language 46: 334–67. [Google Scholar] [CrossRef] [PubMed]
- Deignan, Alice. 2003. Metaphorical expressions and culture: An indirect link. Metaphor and Symbol 18: 255–71. [Google Scholar] [CrossRef]
- Deng, Xuemei, and Kunxue Xiao. 2012. The correlation between metaphorical competence and receptive competence in English. Journal of Guangdong University of Foreign Studies 23: 47–52. [Google Scholar]
- Fattahi, Neda, and Mansoor Nushi. 2021. The effect of gender and language proficiency on the metaphor use in the writing of TEFL students. Asian-Pacific Journal of Second and Foreign Language Education 6: 25. [Google Scholar] [CrossRef]
- Galantomos, Ioannis. 2019. Gender and proficiency effects on metaphor use among Greek learners. International Journal of Applied Linguistics 29: 61–77. [Google Scholar] [CrossRef]
- Gardner, Howard, and Ellen Winner. 1978. The development of metaphoric competence: Implications for humanistic disciplines. Critical Inquiry 5: 123–41. [Google Scholar] [CrossRef]
- Greenhalgh, Trisha, and Richard Peacock. 2005. Effectiveness and efficiency of search methods in systematic reviews of complex evidence: Audit of primary sources. BMJ 331: 1064–65. [Google Scholar] [CrossRef]
- Han, Ying. 2020. A Correlation Study Between Breadth, Depth of Vocabulary Knowledge and Metaphorical Competence of Chinese English Learners. Master’s thesis, Shaanxi Normal University, Xi’an, China. [Google Scholar]
- Hashemian, Mahmood. 2018. A study of L2 learners’ metaphorical competence and personality types: A case of thinking/feeling vs. judging/perceiving. Indonesian Journal of Learning and Instruction 1: 21–32. [Google Scholar] [CrossRef]
- Hoang, Ha. 2014. Metaphor and second language learning: The state of the field. TESL-EJ 18: 1–27. [Google Scholar]
- Hopewell, Sally, Mike Clarke, and Sue Mallett. 2005. Grey literature and systematic reviews. In Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments. Edited by Hannah R. Rothstein, Alexander J. Sutton and Michael Bornstein. Chichester: John Wiley and Sons, pp. 49–72. [Google Scholar]
- Hymes, Dell. 1972. On communicative competence. In Sociolinguistics. Edited by John B. Pride and Janet Holmes. New York: Penguin, pp. 269–93. [Google Scholar]
- Ifantidou, Elly, and Areti Hatzidaki. 2019. Metaphor comprehension in L2: Meaning, images and emotions. Journal of Pragmatics 149: 78–90. [Google Scholar] [CrossRef]
- Johnson, James. 1991. Developmental versus language-based factors in metaphor interpretation. Journal of Educational Psychology 83: 470–83. [Google Scholar] [CrossRef]
- Johnson, James, and Teresa Rosano. 1993. Relation of cognitive style to metaphor interpretation and second language proficiency. Applied Psycholinguistics 14: 159–69. [Google Scholar] [CrossRef]
- Johnson, Judith M. 1996. Metaphor interpretations by second language learners: Children and adults. Canadian Modern Language Review 53: 219–41. [Google Scholar] [CrossRef]
- Kasirer, Anat, and Nira Mashal. 2018. Fluency or similarities? Cognitive abilities that contribute to creative metaphor generation. Creativity Research Journal 30: 224–32. [Google Scholar] [CrossRef]
- Kövecses, Zoltán. 2010. Metaphor, language, and culture. DELTA: Documentação de Estudos em Linguística Teórica e Aplicada 26: 739–57. [Google Scholar] [CrossRef]
- Lakoff, George, and Mark Johnson. 1980. Metaphors We Live By. Chicago: University of Chicago Press. [Google Scholar]
- Lazar, Gillian. 1996. Using figurative language to expand students’ vocabulary. ELT Journal 50: 43–51. [Google Scholar] [CrossRef]
- Li, Hui. 2012. A Study of the Effect of English Major’s Cognitive Ability on Metaphor Comprehension. Master’s thesis, Shenyang Normal University, Shenyang, China. [Google Scholar]
- Littlemore, Jeannette. 2001. Metaphoric competence: A language learning strength of students with a holistic cognitive style? TESOL Quarterly 35: 459–91. [Google Scholar] [CrossRef]
- Littlemore, Jeannette. 2010. Metaphoric competence in the first and second language: Similarities and differences. In Cognitive Processing in Second Language Acquisition. Edited by Martin Pütz and Laura Sicola. Amsterdam: John Benjamins, pp. 293–316. [Google Scholar]
- Littlemore, Jeannette, and Graham Low. 2006a. Figurative Thinking and Foreign Language Learning. Basingstoke: Palgrave Macmillan. [Google Scholar]
- Littlemore, Jeannette, and Graham Low. 2006b. Metaphoric competence, second language learning, and communicative language ability. Applied Linguistics 27: 268–94. [Google Scholar] [CrossRef]
- Littlemore, Jeannette, Tina Krennmayr, James Turner, and Sarah Turner. 2014. An investigation into metaphor use at different levels of second language writing. Applied Linguistics 35: 117–44. [Google Scholar] [CrossRef]
- Low, Graham. 1988. On teaching metaphor. Applied Linguistics 9: 125–47. [Google Scholar] [CrossRef]
- O’Reilly, Dermot, and Emma Marsden. 2021. Eliciting and measuring L2 metaphoric competence: Three decades on from Low (1988). Applied Linguistics 42: 24–59. [Google Scholar] [CrossRef]
- Page, Matthew J., Joanne E. McKenzie, Patrick M. Bossuyt, Isabelle Boutron, Tammy C. Hoffmann, Cynthia D. Mulrow, Larissa Shamseer, Jennifer M. Tetzlaff, Elie A. Akl, Sue E. Brennan, and et al. 2021. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 372: n71. [Google Scholar] [CrossRef]
- Peterson, Robert A., and Steven P. Brown. 2005. On the use of beta coefficients in meta-analysis. Journal of Applied Psychology 90: 175–81. [Google Scholar] [CrossRef]
- Rezaei, Zahra, and Ali Jafarpour. 2013. The effect of differences in the general proficiency of Iranian EFL students on their metaphorical competence. Iranian Journal of Research in English Language Teaching 1: 62–72. [Google Scholar]
- Roth, Froma P., Deborah L. Speece, Douglas H. Cooper, and Susan De La Paz. 1996. Unresolved mysteries: How do metalinguistic and narrative skills connect with early reading? Journal of Special Education 30: 257–77. [Google Scholar] [CrossRef]
- Savignon, Sandra J. 1985. Evaluation of communicative competence: The ACTFL provisional proficiency guidelines. The Canadian Modern Language Review 41: 1000–7. [Google Scholar] [CrossRef]
- Shi, Jianfeng. 2012. A study on developmental connections among L1 conceptual transfer competence, metaphoric competence and English proficiency. Foreign Language Learning Theory and Practice 35: 57–63. [Google Scholar]
- Sunderland, Jane. 2010. Language, Gender and Children’s Fiction. London: Bloomsbury Publishing. [Google Scholar]
- Wang, Pei, and Chunling Hao. 2013. Cognitive styles as motivating factors of language learners’ metaphorical competence: A case study based on Riding’s CSA. In Advances in Brain Inspired Cognitive Systems. Berlin and Heidelberg: Springer, pp. 83–91. [Google Scholar] [CrossRef]
- Zhao, Qian, Lu Yu, and Ying Yang. 2014. Correlation between receptive metaphoric competence and reading proficiency. English Language Teaching 7: 168–181. [Google Scholar] [CrossRef]
- Zibin, Aseel. 2016. The comprehension of metaphorical expressions by Jordanian EFL learners. SAGE Open 6: 1–15. [Google Scholar] [CrossRef]
Primary Search Term | Secondary Search Term |
---|---|
metaphorical competence | language learning |
metaphorical intelligence | language teaching |
Metaphorical thinking | second language |
conceptual metaphor | foreign language |
conceptual fluency | L2 Language |
Metaphor |
Number of Studies | Q-Value | df (Q) | p-Value | I-Squared |
---|---|---|---|---|
146 | 241.977 | 61 | 0.000 | 74.790 |
Models | Effect Size and 95% Confidence Interval | Test of Null (2-Tail) | ||||||
---|---|---|---|---|---|---|---|---|
Model | Number Studies | Point Estimate | Standard Error | Variance | Lower Limit | Upper Limit | Z | p |
Fixed | 146 | 0.345 | 0.008 | 0.000 | 0.328 | 0.361 | 43.344 | 0.000 |
Random effects | 146 | 0.344 | 0.028 | 0.001 | 0.288 | 0.399 | 12.167 | 0.000 |
Groups | Effect Size and 95% Confidence Interval | Test of Null (2-Tail) | ||||||
---|---|---|---|---|---|---|---|---|
Group | Number Studies | Point Estimate | Standard Error | Variance | Lower Limit | Upper Limit | Z Value | p Value |
Cognitive | 42 | 0.232 | 0.033 | 0.001 | 0.168 | 0.296 | 7.072 | 0.000 |
Linguistic | 87 | 0.421 | 0.041 | 0.002 | 0.340 | 0.502 | 10.188 | 0.000 |
Personal | 17 | 0.216 | 0.035 | 0.001 | 0.147 | 0.284 | 6.198 | 0.000 |
Groups | Effect Size and 95% Confidence Interval | Test of Null (2-Tail) | ||||||
---|---|---|---|---|---|---|---|---|
Group | Number Studies | Point Estimate | Standard Error | Variance | Lower Limit | Upper Limit | Z Value | p Value |
Cognitive intelligence | 20 | 0.301 | 0.058 | 0.003 | 0.188 | 0.414 | 5.233 | 0.000 |
Cognitive style | 22 | 0.171 | 0.033 | 0.001 | 0.105 | 0.236 | 5.138 | 0.000 |
Groups | Effect Size and 95% Confidence Interval | Test of Null (2-Tail) | ||||||
---|---|---|---|---|---|---|---|---|
Group | Number Studies | Point Estimate | Standard Error | Variance | Lower Limit | Upper Limit | Z Value | p Value |
General MC | 9 | 0.422 | 0.069 | 0.005 | 0.287 | 0.556 | 6.134 | 0.000 |
Productive MC | 17 | 0.139 | 0.034 | 0.001 | 0.073 | 0.205 | 4.125 | 0.000 |
Receptive MC | 16 | 0.218 | 0.059 | 0.003 | 0.103 | 0.333 | 3.705 | 0.000 |
Groups | Effect Size and 95% Confidence Interval | Test of Null (2-Tail) | ||||||
---|---|---|---|---|---|---|---|---|
Group | Number Studies | Point Estimate | Standard Error | Variance | Lower Limit | Upper Limit | Z Value | p Value |
General proficiency | 26 | 0.520 | 0.063 | 0.004 | 0.396 | 0.644 | 8.222 | 0.000 |
L1 metaphorical competence | 12 | 0.585 | 0.126 | 0.016 | 0.338 | 0.833 | 4.629 | 0.000 |
Listening | 13 | 0.319 | 0.097 | 0.009 | 0.129 | 0.509 | 3.285 | 0.001 |
Reading | 8 | 0.232 | 0.069 | 0.005 | 0.096 | 0.367 | 3.351 | 0.001 |
Speaking | 3 | 0.075 | 0.049 | 0.002 | −0.020 | 0.171 | 1.547 | 0.122 |
Vocabulary | 17 | 0.378 | 0.045 | 0.002 | 0.290 | 0.466 | 8.442 | 0.000 |
Writing | 8 | 0.405 | 0.180 | 0.032 | 0.053 | 0.757 | 2.256 | 0.02 |
Groups | Effect Size and 95% Confidence Interval | Test of Null (2-Tail) | ||||||
---|---|---|---|---|---|---|---|---|
Group | Number Studies | Point Estimate | Standard Error | Variance | Lower Limit | Upper Limit | Z Value | p Value |
General MC | 30 | 0.442 | 0.073 | 0.005 | 0.298 | 0.586 | 6.031 | 0.000 |
Productive MC | 27 | 0.361 | 0.077 | 0.006 | 0.211 | 0.512 | 4.697 | 0.000 |
Receptive MC | 30 | 0.455 | 0.067 | 0.004 | 0.323 | 0.586 | 6.790 | 0.000 |
Groups | Effect Size and 95% Confidence Interval | Test of Null (2-Tail) | ||||||
---|---|---|---|---|---|---|---|---|
Group | Number Studies | Point Estimate | Standard Error | Variance | Lower Limit | Upper Limit | Z Value | p Value |
Gender | 15 | 0.194 | 0.034 | 0.001 | 0.127 | 0.256 | 5.675 | 0.000 |
Personal | 2 | 0.219 | 0.094 | 0.009 | 0.240 | 0.545 | 4.570 | 0.000 |
Groups | Effect Size and 95% Confidence Interval | Test of Null (2-Tail) | ||||||
---|---|---|---|---|---|---|---|---|
Group | Number Studies | Point Estimate | Standard Error | Variance | Lower Limit | Upper Limit | Z Value | p Value |
General MC | 4 | 0.319 | 0.055 | 0.003 | 0.211 | 0.427 | 5.792 | 0.000 |
Productive MC | 3 | 0.118 | 0.063 | 0.004 | −0.05 | 0.241 | 1.877 | 0.061 |
Receptive MC | 8 | 0.173 | 0.046 | 0.002 | 0.083 | 0.263 | 3.766 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Guan, L.; Zhou, X. Is L2 Learners’ Metaphorical Competence Essentially Cognitive, Linguistic, or Personal?—A Meta-Analysis. J. Intell. 2025, 13, 117. https://doi.org/10.3390/jintelligence13090117
Chen Z, Guan L, Zhou X. Is L2 Learners’ Metaphorical Competence Essentially Cognitive, Linguistic, or Personal?—A Meta-Analysis. Journal of Intelligence. 2025; 13(9):117. https://doi.org/10.3390/jintelligence13090117
Chicago/Turabian StyleChen, Zhaojuan, Lu Guan, and Xiaoyong Zhou. 2025. "Is L2 Learners’ Metaphorical Competence Essentially Cognitive, Linguistic, or Personal?—A Meta-Analysis" Journal of Intelligence 13, no. 9: 117. https://doi.org/10.3390/jintelligence13090117
APA StyleChen, Z., Guan, L., & Zhou, X. (2025). Is L2 Learners’ Metaphorical Competence Essentially Cognitive, Linguistic, or Personal?—A Meta-Analysis. Journal of Intelligence, 13(9), 117. https://doi.org/10.3390/jintelligence13090117