School Readiness Test and Intelligence in Preschool as Predictors of Middle School Success: Result of an Eight-Year Longitudinal Study
Abstract
:1. Introduction
2. Theoretical Framework
2.1. School Readiness as a Predictor of Later Academic Performance
2.2. Intelligence and Academic Performance
2.3. Socio-Economic Status, Intelligence and Academic Performance
2.4. The Education System in Hungary
2.5. School Readiness Test Battery in Hungary
2.6. Hungarian National Assessment of Basic Competencies
3. Research Questions
4. Methods
4.1. Sample
4.2. Data Collection
4.3. Measures
4.3.1. Preschool Measures
Intelligence
DIFER
Mother’s Education
4.3.2. School Measures
Hungarian National Assessment of Basic Competencies (NABC)
5. Results
5.1. Preliminary Analysis
5.2. Intercorrelation of the Study Variables
5.3. Regression Models
5.3.1. Regression Model One
5.3.2. Regression Model Two
5.3.3. Regression Model Three
5.3.4. Summary of the Regression Models
6. Discussion
7. Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akers, Lauren, Patricia Del Grosso, Sally Atkins-Burnett, Shannon Monahan, Kimberly Boller, Judith Carta, and Barbara Wasik. 2015. Tailored Teaching: The Need for Stronger Evidence about Early Childhood Teachers’ Use of Ongoing Assessment to Individualise Instruction. Research Brief OPRE Report. Washington, DC: Mathematica Policy Research. [Google Scholar]
- Amukune, Stephen. 2021. Preschool education in Finland and Kenya: Comparison within perspectives of educational quality. International Journal of Early Childhood Learning 28: 51–67. [Google Scholar] [CrossRef]
- Apró, Melinda. 2013. A hazai iskolaérettségi vizsgálatok gyakorlata napjainkban [The Hungarian school readiness tests nowadays]. Iskolakultúra 23: 52–71. [Google Scholar]
- Balázsi, Ildikó, and László Ostorics. 2020. The Hungarian educational assessment system. In Monitoring Student Achievement in the 21st Century. Edited by Heidi Harju-Luukkainen, Nele McElvany and Justine Stang. Berlin/Heidelberg: Springer, pp. 157–69. [Google Scholar] [CrossRef]
- Balázsi, Ildikó, Péter Balkányi, László Ostorics, Ildikó Palincsár, Annamária Rábainé Szabó, Ildikó Szepesi, Judit Szipőcsné-Krolopp, and Vadász Csaba. 2014. Az Országos kompetenciamérés tartalmi keretei. [Frameworks for the National Assessment of Basic Competencies]. Budapest: Oktatási Hivatal. [Google Scholar]
- Belsky, Daniel W., Benjamin Domingue, Robbee Wedow, Louise Arseneault, Jason D. Boardman, Avshalom Caspi, Dalton Conley, Jason M. Fletcher, Jeremy Freese, Pamela Herd, and et al. 2018. Genetic analysis of social-class mobility in five longitudinal studies. Proceedings of the National Academy of Sciences 115: E7275–E7284. [Google Scholar] [CrossRef] [PubMed]
- Blair, Clancy, and Cybele Raver. 2015. School Readiness and Self-Regulation: A Developmental Psychobiological Approach. Annual Review of Psychology 66: 711–31. [Google Scholar] [CrossRef] [PubMed]
- Bradley, Robert, and Robert Corwyn. 2002. Socioeconomic status and child development. Annual Review of Psychology 53: 371–99. [Google Scholar] [CrossRef]
- Burchinal, Margaret, Katherine Magnuson, Douglas Powell, and Sandra Soliday Hong. 2015. Early childcare and education. In Handbook of Child Psychology and Developmental Science. Edited by Richard M. Lerner. Hoboken: John Wiley & Sons, Inc., pp. 1–45. [Google Scholar] [CrossRef]
- Claessens, Amy, Greg Duncan, and Mimi Engel. 2009. Kindergarten skills and fifth-grade achievement: Evidence from the ECLS-K. Economics of Education Review 28: 415–27. [Google Scholar] [CrossRef]
- Colom, Roberto, and Carmen Flores-Mendoza. 2007. Intelligence predicts scholastic achievement irrespective of SES factors: Evidence from Brazil. Intelligence 35: 243–51. [Google Scholar] [CrossRef]
- Csapó, Benő, Gyöngyvér Molnár, and József Nagy. 2014. Computer-based assessment of school readiness and early reasoning. Journal of Educational Psychology 106: 639–50. [Google Scholar] [CrossRef]
- Davis, Helen, Debora Similieana Valcan, and Deborah Pino-Pasternak. 2021. The Relationship between executive functioning and self-regulated learning in Australian children. British Journal of Developmental Psychology 39: 625–52. [Google Scholar] [CrossRef]
- Davoudzadeh, Pega, Melissa L McTernan, and Kevin J Grimm. 2015. Early school readiness predictors of grade retention from kindergarten through eighth grade: A multilevel discrete-time survival analysis approach. Early Childhood Research Quarterly 32: 183–92. [Google Scholar] [CrossRef]
- Deary, Ian J., Steve Strand, Pauline Smith, and Cres Fernandes. 2007. Intelligence and educational achievement. Intelligence 35: 13–21. [Google Scholar] [CrossRef]
- Demetriou, Andreas, Smaragda Kazi, George Spanoudis, and Nikolaos Makris. 2019. Predicting school performance from cognitive ability, self-representation, and personality from primary school to senior high school. Intelligence 76: 101381. [Google Scholar] [CrossRef]
- Demetriou, Andreas, Smaragda Kazi, Nikolaos Makris, and George Spanoudis. 2020. Cognitive ability, cognitive self-awareness, and school performance: From childhood to adolescence. Intelligence 79: 1–10. [Google Scholar] [CrossRef]
- Denham, Susanne A., Hideko Bassett, Melissa Mincic, Sara Kalb, Erin Way, Todd Wyatt, and Yana Segal. 2012. Social–emotional learning profiles of preschoolers’ early school success: A person-centered approach. Learning and Individual Differences 22: 178–89. [Google Scholar] [CrossRef]
- Diamond, Adele, and Daphne S. Ling. 2019. Review of the Evidence on, and Fundamental Questions About, Efforts to Improve Executive Functions, Including Working Memory. In Cognitive and Working Memory Training: Perspectives from Psychology, Neuroscience, and Human Development. Edited by Jared M. Novick, Michael F. Bunting, Michael R. Dougherty and Randall W. Engle. Oxford, UK: Oxford University Press, pp. 145–389. [Google Scholar] [CrossRef]
- Dolean, Dacian, and Alexandra Cãlugãr. 2020. How reliably can we measure a child’s true IQ? Socio-economic status can explain most of the inter-ethnic differences in general non-verbal abilities. Frontiers in Psychology 11: 2000. [Google Scholar] [CrossRef] [PubMed]
- Duncan, Greg J., and Katherine Magnuson. 2011. The nature and impact of early achievement skills, attention skills, and behavior problems. In Whither Opportunity: Rising Inequality, Schools, and Children’s Life. Edited by Greg J. Duncan and Richard J. Murnane. New York: Russell Sage, pp. 47–69. [Google Scholar]
- Duncan, Greg, Chantelle Dowsett, Amy Claessens, Katherine Magnuson, Aletha C. Huston, Pamela Klebanov, Linda S. Pagani, Leon Feinstein, Mimi Engel, Jeanne Brooks-Gunn, and et al. 2007. School Readiness and Later Achievement. Developmental Psychology 43: 1428–46. [Google Scholar] [CrossRef]
- Duncan, Greg J., Katherine Magnuson, and Elizabeth Votruba-Drzal. 2015. Children and socioeconomic status. In Handbook of Child Psychology and Developmental Science. Edited by Richard M. Lerner. Chichester: Wiley Publishing, pp. 1–40. [Google Scholar] [CrossRef]
- Duncan, Robert, Greg Duncan, Lisa Stanley, Efren Aguilar, and Neal Halfon. 2020. The Kindergarten Early Development Instrument predicts third grade academic proficiency. Early Childhood Research Quarterly 53: 287–300. [Google Scholar] [CrossRef]
- Educational Authority. 2016. A Diagnosztikus Fejlődésvizsgáló Rendszerről [The Diagnostic Assessment System]. Budapest: Oktatási Hivatal. Available online: https://www.oktatas.hu/kozneveles/meresek/difer/difer_leiras (accessed on 15 May 2022).
- Eurydice. 2022. National Education Systems, Hungary. Available online: https://eurydice.eacea.ec.europa.eu/national-education-systems/hungary/hungary (accessed on 15 May 2022).
- Fazekasné Fenyvesi, Margit. 2006. A beszédhanghallás fejlesztése 4–8 éves életkorban [Games and Methods for Improving Phoneme Perception in Ages of 4–8]. Szeged: Mozaik Kiadó. [Google Scholar]
- Figlio, David N., Jeremy Freese, Krzysztof Karbownik, and Jeffrey Roth. 2017. Socioeconomic status and genetic influences on cognitive development. Proceedings of the National Academy of Sciences 114: 13441–46. [Google Scholar] [CrossRef]
- Fink, Elian, Wendy Browne, Claire Hughes, and Jenny Gibson. 2019. Using a child’s-eye view of social success to understand the importance of school readiness at the transition to formal schooling. Social Development 28: 186–99. [Google Scholar] [CrossRef]
- Fleisz-Gyurcsik, Anita. 2021. A hazai publikált óvoda–iskola átmenetet segítő gyakorlatok szisztematikus áttekintése [A systematic review of the preschool to school transition practices in Hungary]. Gyermeknevelés 9: 56–90. [Google Scholar] [CrossRef]
- Gliner, Jeffery, George Morgan, and Nancy Leech. 2017. Research Methods in Applied Settings: An Integrated Approach to Design and Analysis, 3rd ed. London: Routledge. [Google Scholar]
- Golyán, Szilvia. 2017. The early childhood institutional change: The problem of transition between kindergarten and school in Hungary. Módszertani Közlöny 1: 103–17. [Google Scholar]
- Gorard, Stephen, and Beng Huat See. 2009. The impact of socio-economic status on participation and attainment in science. Studies in Science Education 45: 93–129. [Google Scholar] [CrossRef]
- Gyurcsik, Anita. 2020. Az óvoda-iskola átmenet óvodapedagógusok, tanítók és szülők szemén keresztül [The preschool-school transition through the eyes of preschool teachers, elementary school teachers and parents in Hungary]. Gyermeknevelés 8: 176–96. [Google Scholar] [CrossRef]
- Gyurcsik, Anita, Orsolya Fehér, and Fanni Földi. 2017. Az iskolaérettség mérésének összehasonlítása Magyarországon és Szerbiában [Comparison of the school readiness assessment in Hungary and Serbia]. Gyermeknevelés 5: 93–100. [Google Scholar] [CrossRef]
- Hair, Elizabeth, Tamara Halle, Elizabeth Terry-Humen, Bridget Lavelle, and Julia Calkins. 2006. Children’s school readiness in the ECLS-K: Predictions to academic, health, and social outcomes in first grade. Early Childhood Research Quarterly 21: 431–54. [Google Scholar] [CrossRef]
- Hair, Joseph F., William C. Black, Barry J. Babin, and Rolph E. Anderson. 2019. Multivariate Data Analysis. Upper Saddle River: Prentice Hall. [Google Scholar]
- Hanscombe, Ken, Maciej Trzaskowski, Claire Haworth, Oliver Davis, Philip Dale, and Robert Plomin. 2012. Socioeconomic status (SES) and children’s intelligence (IQ): In a UK-representative sample SES moderates the environmental, not genetic, effect on IQ. PLoS ONE 7: e30320. [Google Scholar] [CrossRef]
- Hayati, Tri Rahmah, and Kamid Kamid. 2019. Analysis of mathematical literacy processes in high school students. International Journal of Trends in Mathematics Education Research 2: 116–19. [Google Scholar] [CrossRef]
- Heckman, James, and Stefano Mosso. 2014. The economics of human development and social mobility. Annual Review of Economics 6: 689–733. [Google Scholar] [CrossRef] [Green Version]
- Janurik, Márta, and Krisztián Józsa. 2022. Long-term impacts of early musical abilities on academic achievement: A longitudinal study. Journal of Intelligence 10: 36. [Google Scholar] [CrossRef]
- Jones, Stephanie, Dana Charles McCoy, and Lauren Hay. 2017. Classroom-based early childhood interventions. In Handbook of Early Childhood Development: Programs, Practices & Policies. Edited by Elizabeth Votruba-Drzal and Eric Dearing. Hoboken, NJ, USA: Wiley-Blackwell-Publishers, pp. 237–60. [Google Scholar]
- Józsa, Krisztián. 2014. A számolás fejlesztése 4–8 éves életkorban [Games and Methods for Improving Pre-Math Skills in Ages of 4–8]. Szeged: Mozaik Kiadó. [Google Scholar]
- Józsa, Krisztián. 2016. Kihívások és lehetőségek az óvodai fejlesztésben [Challenges and possibilities in preschool education]. Iskolakultúra 26: 59–74. [Google Scholar] [CrossRef]
- Józsa, Krisztián, and Karen Caplovitz Barrett. 2018. Affective and social mastery motivation in preschool as predictors of early school success: A longitudinal study. Early Childhood Research Quarterly 45: 81–92. [Google Scholar] [CrossRef]
- Józsa, Krisztián, and Benő Csapó. 2010. Az iskola kezdetén mért DIFER készségek előrejelző ereje [The predictive power of DIFER skills measured at the beginning of school]. In PÉK 2010-VIII. Pedagógiai Értékelési Konferencia: Program—Tartalmi összefoglalók. Edited by Éva Molnár and László Kasik. Szeged: SZTE Neveléstudományi Doktori Iskola. [Google Scholar]
- Józsa, Krisztián, and Éva D. Molnár. 2013. The relationship between mastery motivation, self-regulated learning and school success: A Hungarian and wider European perspective. In Handbook of Self-Regulatory Processes in Development: New Directions and International Perspectives. Edited by Karen Caplovitz Barrett, Nathan A. Fox, George A. Morgan, Deborah J. Fidler and Lisa A. Daunhauer. New York: Psychology Press, pp. 265–304. [Google Scholar]
- Józsa, Krisztián, Zentai Gabriella, and Hajduné Holló Katalin. 2017. A gondolkodás fejlesztése 4–8 éves életkorban [Methods for Improving Thinking Skills in Ages of 4–8.]. Szeged: Mozaik Kiadó. [Google Scholar]
- Józsa, Krisztián, Balázs Török, and Cerissa Stevenson. 2018. Preschool and kindergarten in Hungary and the United States: A comparison within transnational development policy. International Journal of Educational Development 62: 88–95. [Google Scholar] [CrossRef]
- Kälin, Sonja, and Claudia M. Roebers. 2021. Self-Regulation in preschool children: Factor structure of different measures of effortful control and executive functions. Journal of Cognition and Development 22: 48–67. [Google Scholar] [CrossRef]
- Kyttälä, Minna, and Juhani Lehto. 2008. Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education 23: 77–94. [Google Scholar] [CrossRef]
- Lak, Ágnes Rozina, Palincsár Ildikó, Szabó Lívia Dóra, Szepesi Ildikó, and Szipőcsné Krolopp Judit. 2015. Országos kompetenciamérés 2014. feladatok és jellemzőik. Matematika 6. évfolyam [National Assessment of Basic Competencies 2014. Tasks and Its Features. Mathematics, Grade 6.]. Budapest: Oktatási Hivatal. [Google Scholar]
- Leech, Nancy L., Karen C. Barrett, and George A. Morgan. 2015. IBM SPSS for Intermediate Statistics: Use and Interpretation, 5th ed. New York: Routledge. [Google Scholar]
- Linder, M. Sandra, Deanna M. Ramey, and Serbay Zambak. 2013. Predictors of school readiness in literacy and mathematics: A selective review of the literature. Early Childhood Research & Practice 15. Available online: https://ecrp.illinois.edu/v15n1/linder.html (accessed on 1 May 2022).
- Malecki, Christine Kerres, and Michelle Kilpatrick Demaray. 2006. Social support as a buffer in the relationship between socioeconomic status and academic performance. School Psychology Quarterly 21: 375–95. [Google Scholar] [CrossRef]
- Miskolcziné, Radics Katalin, and József Nagy. 2006. Az írásmozgás-koordináció fejlesztése 4–8 éves életkorban [Methods for Improving Fine Motor Skills in Ages of 4–8]. Szeged: Mozaik Kiadó. [Google Scholar]
- Moore, S. David, William I. Notz, and Michael Fligner. 2021. The Basic Practice of Statistics, 9th ed. New York: Macmillan Learning. [Google Scholar]
- Morgan, Paul, George Farkas, Marianne Hillemeier, and Steve Maczuga. 2016. Science achievement gaps begin very early, persist, and are largely explained by modifiable factors. Educational Researcher 45: 18–35. [Google Scholar] [CrossRef]
- Nagy, József. 1974a. Iskolaelőkészítés és beiskolázás [Preparation for School and School Entry]. Budapest: Akadémiai Kiadó. [Google Scholar]
- Nagy, József. 1974b. A kompenzáló beiskolázási modell [The Compensatory School Beginning Model]. Budapest: Akadémiai Kiadó. [Google Scholar]
- Nagy, József. 1976. PREFER, Preventív Fejlettségvizsgáló Rendszer 5–6 éves gyermekek iskolakészültségének mérése [Preventive Development Assessment System for Children Aged 5-6 Years]. Budapest: MTA Pedagógiai Kutatócsoport. [Google Scholar]
- Nagy, József. 1980. 5–6 éves gyermekeink iskolakészültsége [School Readiness of Our 5-6 Year Old Children]. Budapest: Akadémiai Kiadó. [Google Scholar]
- Nagy, József, ed. 2009. Fejlesztés mesékkel: Az anyanyelv, a gondolkodás fejlődésének segítése mesékkel 4–8 éves életkorban [Improvement by Tale Stories: Methods for Improving Language and Thinking Skills in Ages of 4–8]. Szeged: Mozaik Kiadó. [Google Scholar]
- Nagy, József, Krisztián Józsa, Tibor Vidákovich, and Margit Fazekasné Fenyvesi. 2004a. DIFER programcsomag: Diagnosztikus fejlődésvizsgáló és kritériumorientált fejlesztő rendszer 4–8 évesek számára [DIFER: A Diagnostic System of Assessment and Criterion-Referenced Improvement between the Ages of 4–8.]. Szeged: Mozaik Kiadó. [Google Scholar]
- Nagy, József, Krisztián Józsa, Tibor Vidákovich, and Margit Fazekasné Fenyvesi. 2004b. Az elemi alapkészségek fejlődése 4–8 éves életkorban [The Development of Elementary Skills between the Ages of 4 and 8. A National Overview of the Seven Basic Skills Needed for Academic Success and Their Pedagogic Consequences]. Szeged: Mozaik Kiadó. [Google Scholar]
- National Education Goals Panel. 1991. The goal 1 technical planning subgroup report on school readiness. Washington, DC: Author. [Google Scholar]
- Pekdogan, Serpil, and Esra Akgul. 2016. Preschool children’s school readiness. International Education Studies 10: 144. [Google Scholar] [CrossRef]
- Peng, Peng, Tengfei Wang, Cuicui Wang, and Xin Lin. 2019. A meta-analysis on the relation between fluid intelligence and reading/mathematics: Effects of tasks, age, and social economics status. Psychological Bulletin 145: 189–236. [Google Scholar] [CrossRef] [PubMed]
- Pisani, Lauren, Ivelina Borisova, and Amy Jo Dowd. 2018. Developing and validating the International Development and Early Learning Assessment (IDELA). International Journal of Educational Research 91: 1–15. [Google Scholar] [CrossRef]
- Primi, Ricardo, Maria Eugénia Ferrão, and Leandro S. Almeida. 2010. Fluid intelligence as a predictor of learning: A longitudinal multilevel approach applied to math. Learning and Individual Differences 20: 446–51. [Google Scholar] [CrossRef]
- Rathbun, Amy, and Anlan Zhang. 2016. Primary Early Care and Education Arrangements and Achievement at Kindergarten Entry (NCES 2016-070); Washington, DC: National Center for Education Statistics, US Department of Education.
- Raven, John, John Carlyle Raven, and John H Court. 1998. Raven Manual: Section 4, Advanced Progressive Matrices. Oxford: Oxford Psychologists Press Ltd. [Google Scholar]
- Razza, A. Rachel, Anne Martin, and Jeanne Brooks-Gunn. 2015. Are approaches to learning in kindergarten associated with academic and social competence similarly? Child & Youth Care Forum 44: 757–76. [Google Scholar]
- Ricciardi, Courtney, Louis Manfra, Suzanne Hartman, Charles Bleiker, Laura Dineheart, and Adam Winsler. 2021. School readiness skills at age four predict academic achievement through 5th grade. Early Childhood Research Quarterly 57: 110–20. [Google Scholar] [CrossRef]
- Roth, Bettina, Nicolas Becker, Sara Romeyke, Sarah Schäfer, Florian Domnick, and Frank M Spinath. 2015. Intelligence and school grades: A meta-analysis. Intelligence 53: 118–37. [Google Scholar] [CrossRef]
- Russo, Jaclyn, Amanda Williford, Anna J Markowitz, Varginia E Vitiello, and Dophna Bassok. 2019. Examining the validity of a widely-used school readiness assessment: Implications for teachers and early childhood programs. Early Childhood Research Quarterly 48: 14–25. [Google Scholar] [CrossRef]
- Sabol, Terri, and Robert Pianta. 2017. The State of Young Children in the United States: School Readiness. In The Wiley Handbook of Early Childhood Development Programs, Practices, and Policies. Hoboken, NJ, USA: Wiley Online Library, pp. 3–17. [Google Scholar]
- Sackett, R. Paul, Nathan R. Kuncel, Justin J. Arneson, Sara R. Cooper, and Shonna D. Waters. 2009. Does socioeconomic status explain the relationship between admissions tests and post-secondary academic performance? Psychological Bulletin 135: 1–22. [Google Scholar] [CrossRef] [PubMed]
- Selzam, Saskia, Stuart J Ritchie, Jean-Baptiste Pingault, Chandra A. Reynolds, Paul F. O’Reilly, and Robert Plomin. 2019. Comparing within- and between-family polygenic score prediction. American Journal of Human Genetics 105: 351–63. [Google Scholar] [CrossRef]
- Sirin, Selcuk R. 2005. Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Educational Research 75: 417–53. [Google Scholar] [CrossRef]
- Sung, Jihyun, and Kandauda Wickrama. 2018. Longitudinal relationship between early academic achievement and executive function: Mediating role of approaches to learning. Contemporary Educational Psychology 54: 171–83. [Google Scholar] [CrossRef]
- Szabó, Lívia Dóra, Ildikó Szepesi, Judit Takácsné Kárász, and Csaba Vadász. 2018. Országos kompetenciamérés 2017. Országos jelentés [National Assessment of Basic Competencies 2017. National Report]. Budapest: Oktatási Hivatal. [Google Scholar]
- von Stumm, Sophie. 2017. Socioeconomic status amplifies the achievement gap throughout compulsory education independent of intelligence. Intelligence 60: 57–62. [Google Scholar] [CrossRef]
- von Stumm, Sophie, Emily Smith-Woolley, Ziada Ayorech, Andrew McMillan, Kaili Rimfeld, Philip S. Dale, and Robert Plomin. 2020. Predicting educational achievement from genomic measures and socioeconomic status. Developmental Science 23: e12925. [Google Scholar] [CrossRef]
- Welsh, Janet, Karen Bierman, Robert Nix, and Brenda Heinrichs. 2020. Sustained effects of a school readiness intervention: 5th grade outcomes of the Head Start REDI Program. Early Childhood Research Quarterly 53: 151–60. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, Michael, and Kesha Hudson. 2021. Current Issues in the Conceptualization and Measurement of Executive Function Skills. In Executive Functions and Writing. Oxford, UK: Oxford University Press. [Google Scholar]
- Yamamoto, Noriko, and Kyoko Imai-Matsumura. 2019. Gender differences in executive function and behavioural self-regulation in 5 years old kindergarteners from East Japan. Early Child Development and Care 189: 56–67. [Google Scholar] [CrossRef]
- Zentai, Gabriella, and Krisztián Józsa. 2012. Az elemi alapkészségek óvodáskori fejlettségének prediktív ereje az elsős készségfejlettségre: Egy longitudinális vizsgálat eredményei [Predictive Power of Preschool Skills for First-Grade Skills: Results of a Longitudinal Study]. In XII. Országos Neveléstudományi Konferencia: A munka és nevelés világa a tudományban. Program és Összefoglalók. Edited by András Benedek, Péter Tóth and Anildo Vedovatti. Budapest: MTA Pedagógiai Bizottság, p. 154. [Google Scholar]
- Zentai, Gabriella, and Krisztián Józsa. 2014. Óvodás gyermekek gondolkodási képességének fejlesztése: Egy fejlesztő program módszerei és eredményei [Improvement of Classification Skill in Preschool: Methods and Results]. Fejlesztő Pedagógia 25: 9–14. [Google Scholar]
- Zsolnai, Anikó. 2006. A szocialitás fejlesztése 4–8 éves életkorban [Methods for Improving Social Skills in Ages of 4–8]. Szeged: Mozaik Kiadó. [Google Scholar]
Tests and Subtests | Number of Items | Cronbach’s α | Min–Max | Mean | SD |
---|---|---|---|---|---|
Preschool | |||||
Social skills | 24 | .97 | 20–93 | 56.87 | 13.07 |
Fine motor control | 24 | .87 | 4–75 | 31.35 | 15.42 |
Phoneme perception | 60 | .93 | 12–100 | 80.17 | 15.09 |
Vocabulary of relations | 24 | .76 | 33–100 | 69.53 | 16.51 |
Pre-math | 38 | .90 | 9–81 | 41.71 | 14.83 |
DIFER | 170 | .97 | 22–80 | 55.93 | 9.95 |
Grade 6 | |||||
GPA | 12 | .91 | 1–5 | 3.97 | 0.70 |
Math test | 67 | .90 | 1079–2059 | 1436.39 | 175.87 |
Reading test | 80 | .92 | 971–1961 | 1428.76 | 184.92 |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1. Social skills | − | |||||||
2. Fine motor control | .27 ** | − | ||||||
3. Phoneme perception | .32 ** | .11 | − | |||||
4. Vocabulary of relations | .46 ** | .22 ** | .31 ** | − | ||||
5. Pre-math | .42 ** | .21 ** | .38 ** | .35 ** | − | |||
6. DIFER | .72 ** | .55 ** | .64 ** | .72 ** | .70 ** | − | ||
7. IQ | .32 ** | .40 ** | .27 ** | .29 ** | .28 ** | .47 ** | − | |
8. Mothers’ ed. | .24 ** | .21 ** | .18 * | .21 ** | .26 ** | .33 ** | .32 ** | − |
Variables | 1 | 2 |
---|---|---|
1. GPA | – | |
2. Math test | .66 ** | – |
3. Reading test | .72 ** | .70 ** |
Variables | GPA | Math Test | Reading Test |
---|---|---|---|
1. Social skills | .34 ** | .37 ** | .34 ** |
2. Fine motor control | .40 ** | .36 ** | .27 ** |
3. Phoneme perception | .24 ** | .25 ** | .24 ** |
4. Vocabulary of relations | .30 ** | .32 ** | .35 ** |
5. Pre-math | .29 ** | .29 ** | .30 ** |
6. DIFER | .47 ** | .48 ** | .45 ** |
7. IQ preschool | .47 ** | .55 ** | .44 ** |
8. Mothers’ ed. | .49 ** | .37 ** | .37 ** |
Regression Models | Unstand. Coeff. | β | t | Sig. | r | rβ | Collinearity | ||
---|---|---|---|---|---|---|---|---|---|
B | SE | Tolerance | VIF | ||||||
1. GPA (grade 6) | |||||||||
Constant | 1.75 | .23 | 7.64 | <.001 | |||||
DIFER Preschool | .02 | .01 | .25 | 3.90 | <.001 | .47 | .12 | .76 | 1.32 |
IQ preschool | .01 | .01 | .25 | 3.85 | <.001 | .47 | .12 | .88 | 1.14 |
Mothers’ ed. | .23 | .04 | .33 | 5.44 | <.001 | .49 | .16 | .79 | 1.26 |
2. Math test (grade 6) | |||||||||
Constant | 911.40 | 57.87 | 15.75 | <.001 | |||||
DIFER Preschool | 4.35 | 1.14 | .25 | 3.82 | <.001 | .48 | .12 | .76 | 1.32 |
IQ preschool | 4.35 | .74 | .38 | 5.90 | <.001 | .55 | .21 | .88 | 1.14 |
Mothers’ ed. | 28.51 | 10.44 | .16 | 2.73 | <.001 | .37 | .06 | .79 | 1.26 |
3. Reading test (grade 6) | |||||||||
Constant | 898.06 | 64.61 | 13.90 | <.001 | |||||
DIFER Preschool | 4.95 | 1.27 | .27 | 3.89 | <.001 | .45 | .12 | .76 | 1.32 |
IQ preschool | 3.07 | .82 | .26 | 3.73 | <.001 | .44 | .11 | .88 | 1.14 |
Mothers’ ed. | 36.64 | 11.65 | .20 | 3.14 | <.001 | .37 | .07 | .79 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Józsa, K.; Amukune, S.; Zentai, G.; Barrett, K.C. School Readiness Test and Intelligence in Preschool as Predictors of Middle School Success: Result of an Eight-Year Longitudinal Study. J. Intell. 2022, 10, 66. https://doi.org/10.3390/jintelligence10030066
Józsa K, Amukune S, Zentai G, Barrett KC. School Readiness Test and Intelligence in Preschool as Predictors of Middle School Success: Result of an Eight-Year Longitudinal Study. Journal of Intelligence. 2022; 10(3):66. https://doi.org/10.3390/jintelligence10030066
Chicago/Turabian StyleJózsa, Krisztián, Stephen Amukune, Gabriella Zentai, and Karen Caplovitz Barrett. 2022. "School Readiness Test and Intelligence in Preschool as Predictors of Middle School Success: Result of an Eight-Year Longitudinal Study" Journal of Intelligence 10, no. 3: 66. https://doi.org/10.3390/jintelligence10030066
APA StyleJózsa, K., Amukune, S., Zentai, G., & Barrett, K. C. (2022). School Readiness Test and Intelligence in Preschool as Predictors of Middle School Success: Result of an Eight-Year Longitudinal Study. Journal of Intelligence, 10(3), 66. https://doi.org/10.3390/jintelligence10030066