LMI-Based Results on Robust Exponential Passivity of Uncertain Neutral-Type Neural Networks with Mixed Interval Time-Varying Delays via the Reciprocally Convex Combination Technique
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Shang, Y. On the delayed scaled consensus problems. Appl. Sci. 2017, 7, 713. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Kwon, O.M. Global stability for neural networks of neutral-type with interval time-varying delays. Chaos Solitons Fractals 2009, 41, 1174–1181. [Google Scholar] [CrossRef]
- Sun, J.; Liu, G.P.; Chen, J.; Rees, D. Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica 2010, 46, 466–470. [Google Scholar] [CrossRef]
- Peng, C.; Fei, M.R. An improved result on the stability of uncertain t-s fuzzy systems with interval time-varying delay. Fuzzy Sets Syst. 2013, 212, 97–109. [Google Scholar] [CrossRef]
- Manivannan, R.; Mahendrakumar, G.; Samidurai, R.; Cao, J.; Alsaedi, A. Exponential stability and extended dissipativity criteria for generalized neural networks with interval time-varying delay signals. J. Frankl. Inst. 2017, 354, 4353–4376. [Google Scholar] [CrossRef]
- Zhang, S.; Qi, X. Improved Integral Inequalities for Stability Analysis of Interval Time-Delay Systems. Algorithms 2017, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Manivannan, R.; Samidurai, R.; Cao, J.; Alsaedi, A.; Alsaadi, F.E. Delay-dependent stability criteria for neutral-type neural networks with interval time-varying delay signals under the effects of leakage delay. Adv. Differ. Equ. 2018, 2018, 53. [Google Scholar] [CrossRef]
- Klamnoi, A.; Yotha, N.; Weera, W.; Botmart, T. Improved results on passivity anlysis of neutral-type neural networks with time-varying delays. J. Res. Appl. Mech. Eng. 2018, 6, 71–81. [Google Scholar]
- Hale, J.K. Introduction to Functional Differention Equations; Springer: New York, NY, USA, 2001. [Google Scholar]
- Niculescu, S.I. Delays Effects on Stability: A Robust Control Approach; Springe: London, UK, 2001. [Google Scholar]
- Brayton, R.K. Bifurcation of periodic solution in a nonlinear difference-differential equation of neutral type. Quart. Appl. Math. 1966, 24, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Kuang, Y. Delay Differential Equation with Application in Population Dynamics; Academic Press: Boston, MA, USA, 1993. [Google Scholar]
- Bevelevich, V. Classical Network Synthesis; Van Nostrand: New York, NY, USA, 1968. [Google Scholar]
- Gu, K.; Kharitonov, V.L.; Chen, J. Stability of Time-Delay Systems; Birkhäuser: Berlin, Germany, 2003. [Google Scholar]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice–Hall: Englewood Cliffs, NJ, USA, 1998. [Google Scholar]
- Joya, G.; Atencia, M.A.; Sandoval, F. Hopfield neural networks for optimization: Study of the different dynamics. Neurocomputing 2002, 43, 219–37. [Google Scholar] [CrossRef]
- Manivannan, R.; Samidurai, R.; Zhu, Q. Further improved results on stability and dissipativity analysis of static impulsive neural networks with interval time-varying delays. J. Frankl. Inst. 2017, 354, 6312–6340. [Google Scholar] [CrossRef]
- Marcu, T.; Kppen-Seliger, B.; Stucher, R. Design of fault detection for a hydraulic looper using dynamic neural networks. Control Eng. Pract. 2008, 16, 192–213. [Google Scholar] [CrossRef]
- Stamova, I.; Stamov, T.; Li, X. Global exponential stability of a class of impulsive cellular neural networks with supremums. Int. J. Adapt. Control Signal Process. 2014, 28, 1227–39. [Google Scholar] [CrossRef]
- Park, M.J.; Kwon, O.M.; Ryu, J.H. Passivity and stability analysis of neural networks with time-varying delays via extended free-weighting matrices integral inequality. Neural Netw. 2018, 106, 67–78. [Google Scholar] [CrossRef]
- Wu, Z.G.; Park, J.H.; Su, H.; Chu, J. New results on exponential passivity of neural networks with time-varying delays. Nonlinear Anal. Real World Appl. 2012, 13, 1593–1599. [Google Scholar] [CrossRef]
- Du, Y.; Zhong, S.; Xu, J.; Zhou, N. Delay-dependent exponential passivity of uncertain cellular neural networks with discrete and distributed time-varying delays. ISA Trans. 2015, 56, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Lam, J.D.; Ho, W.C.; Zou, Y. Delay-dependent exponential stability for a class of neutral neural networks with time delays. J. Comput. Appl. Math. 2005, 183, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Tu, Z.W.; Cao, J.; Alsaedi, A.; Alsaadi, F.E.; Hayat, T. Global Lagrange stability of complex-valued neural networks of neutral type with time-varying delays. Complexity 2016, 21, 438–450. [Google Scholar] [CrossRef]
- Maharajan, C.; Raja, R.; Cao, J.; Rajchakit, G.; Alsaedi, A. Novel results on passivity and exponential passivity for multiple discrete delayed neutral-type neural networks with leakage and distributed time-delays. Chaos Solitons Fractals 2018, 115, 268–282. [Google Scholar] [CrossRef]
- Weera, W.; Niamsup, P. Novel delay-dependent exponential stability criteria for neutral-type neural networks with non-differentiable time-varying discrete and neutral delays. Neurocomputing 2016, 173, 886–898. [Google Scholar] [CrossRef]
- Hill, D.J.; Moylan, P.J. Stability results for nonlinear feedback systems. Automatica 1977, 13, 377–382. [Google Scholar] [CrossRef]
- Santosuosso, G.J. Passivity of nonlinear systems with input-output feed through. Automatica 1977, 33, 693–697. [Google Scholar] [CrossRef]
- Xie, L.; Fu, M.; Li, H. Passivity analysis and passification for uncertain signal processing systems. IEEE Trans. Signal Process. 1998, 46, 2394–2403. [Google Scholar]
- Chua, L.O. Passivity and complexity. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1999, 46, 71–82. [Google Scholar] [CrossRef]
- Calcev, G.; Gorez, R.; Neyer, M.D. Passivity approach to fuzzy control systems. Automatica 1988, 34, 339–344. [Google Scholar] [CrossRef]
- Wu, C.W. Synchronization in arrays of coupled nonlinear systems: Passivity, circle criterion, and observer design. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2001, 48, 1257–1261. [Google Scholar]
- Chellaboina, V.; Haddad, W.M. Exponentially dissipative dynamical systems: A nonlinear extension of strict positive realness. J. Math. Prob. Eng. 2003, 2003, 25–45. [Google Scholar] [CrossRef] [Green Version]
- Fradkov, A.L.; Hill, D.J. Exponential feedback passivity and stabilizability of nonlinear systems. Automatica 1998, 34, 697–703. [Google Scholar] [CrossRef]
- Hayakawa, T.; Haddad, W.M.; Bailey, J.M.; Hovakimyan, N. Passivity-based neural network adaptive output feedback control for nonlinear nonnegative dynamical systems. IEEE Trans. Neural Netw. 2005, 16, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Park, P.G.; Ko, J.W.; Jeong, C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica 2011, 47, 235–238. [Google Scholar] [CrossRef]
- Li, T.; Guo, L.; Lin, C. A new criterion of delay-dependent stability for uncertain time-delay systems. IET Control Theory Appl. 2007, 1, 611–616. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samorn, N.; Yotha, N.; Srisilp, P.; Mukdasai, K. LMI-Based Results on Robust Exponential Passivity of Uncertain Neutral-Type Neural Networks with Mixed Interval Time-Varying Delays via the Reciprocally Convex Combination Technique. Computation 2021, 9, 70. https://doi.org/10.3390/computation9060070
Samorn N, Yotha N, Srisilp P, Mukdasai K. LMI-Based Results on Robust Exponential Passivity of Uncertain Neutral-Type Neural Networks with Mixed Interval Time-Varying Delays via the Reciprocally Convex Combination Technique. Computation. 2021; 9(6):70. https://doi.org/10.3390/computation9060070
Chicago/Turabian StyleSamorn, Nayika, Narongsak Yotha, Pantiwa Srisilp, and Kanit Mukdasai. 2021. "LMI-Based Results on Robust Exponential Passivity of Uncertain Neutral-Type Neural Networks with Mixed Interval Time-Varying Delays via the Reciprocally Convex Combination Technique" Computation 9, no. 6: 70. https://doi.org/10.3390/computation9060070
APA StyleSamorn, N., Yotha, N., Srisilp, P., & Mukdasai, K. (2021). LMI-Based Results on Robust Exponential Passivity of Uncertain Neutral-Type Neural Networks with Mixed Interval Time-Varying Delays via the Reciprocally Convex Combination Technique. Computation, 9(6), 70. https://doi.org/10.3390/computation9060070