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Abstract: The issue of the robust exponential passivity analysis for uncertain neutral-type neural
networks with mixed interval time-varying delays is discussed in this work. For our purpose, the
lower bounds of the delays are allowed to be either positive or zero adopting the combination of
the model transformation, various inequalities, the reciprocally convex combination, and suitable
Lyapunov—-Krasovskii functional. A new robust exponential passivity criterion is received and
formulated in the form of linear matrix inequalities (LMIs). Moreover, a new exponential passivity
criterion is also examined for systems without uncertainty. Four numerical examples indicate our
potential results exceed the previous results.

Keywords: robust exponential passivity; neutral-type neural networks; Lyapunov-Krasovskii func-
tional; interval time-varying delays

1. Introduction

Delayed dynamical systems have been proposed rather extensively because they can
be exploited as models to illustrate the transportation systems, communication networks,
teleportation systems, physical systems, and biological systems. Time delay regularly
appeared in many practicals, and it is frequently a cause of instability and terrible per-
formance. Largely, stability for systems with time delays in mainly divided into two
categories; delay-independent and delay-dependent. Delay-independent stability criteria
have a tendency to be more conservative, particularly for delays with small size; such
criteria give no information on the size of the delay. On the other hand, delay-dependent
stability criteria are connected with the size of the delay and generally provide a maximal
delay size. Meanwhile, type of time delays are separated the into two types including
information processing delay and information communication delay, which for which a lot
of issues delayed scaled consensus have been presented [1]. Lately, practical engineering
systems have examined the delays of which the lower bound of the delay is not limited
to zero, which is called an interval time-varying delay. Several delay-interval-dependent
criteria of systems are shown in [2-8]. Moreover, the neutral time delay is a type of delay
which is currently drawing attention. This comes from the fact that the delay exists in
systems both in its derivatives and state variables [9,10] which can be noticed in various
fields such as mechanics, automatic control, distributed networks, heat exchanges, and
robots in contact with rigid environments [11,12] etc.

Nowadays, neural networks are popularly discussed because they can be applied
in many fields. Especially engineering and applied science including signal processing,
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pattern recognition, industrial automation, image processing, parallel computation, indus-
trial automation [13-18]) etc. Therefore, many researchers have been interested in studying
neural networks with time-delays [5,19-22]. Furthermore, in neural networks, it might
occur that there are connections between past state derivatives in the systems. As a result,
it is more natural to consider neural networks with activation functions of past state deriva-
tive networks. Neural networks of this model are called neutral-type neural networks
(NTNNSs), which have appeared to be useful systems in a variety of applications, including
population ecology, propagation, diffusion models and so on. Meanwhile, as is well known,
in the biochemistry experiments of neural network dynamics, neural information may
transfer across chemical reactivity, which results in a neutral-type process. Recently, the
research on the above systems has been extensive and there are many findings in this
area [8,23-26].

As the exponential stability is also important for testing stability because it can identify
the rate of convergence of the system, which correlates with equilibrium points, accordingly,
the exponential stability of various systems has also received a lot of attention from
the researchers (for examples, see [19,21-23,25,26]). Meanwhile, the passivity theory is
considered and has played an important role in the astonishing stability of time-delay
systems [27,28]. It generally has its practical use in signal processing [29], complexity [30],
chaos and synchronization control [31], and fuzzy control [32]. The main idea of the theory
informs that the stability of the system can be perfectly maintained by the passivity’s
properties. Because of this, it can lead to general conclusions on the stability using only
input—output characteristics. As a consequence, there are quite a few researchers who have
been studying this issue. (e.g., [8,20-22,25,28-32]).The properties of exponential passivity
for dynamical systems were studied in [33-35], who remark that exponential passivity
implies passivity, but the opposite does not necessarily hold. Note that a lot of previous
studies mainly attracted on work on stability and passivity analysis of neutral-type neural
networks [8,23-26], and exponential passivity analysis of neural networks [21,22]. As far as
we can tell, the robust exponential passivity of the uncertain neutral-type neural networks
with mixed interval time-varying delays has never been presented.

In this paper, the issue of the new robust exponential passivity criterion is designed
for uncertain NTNNs with mixed interval time-varying delays including discrete, neutral,
and distributed delays. One of the aims of the criterion is to obtain the maximum upper
bounds of time delays or maximum values of the rate of convergence. So, we concentrate
on interval time-varying delays, in which the lower bounds are allowed to be either positive
or zero. The model transformation, the various inequalities, and the reciprocally convex
combination are adopted along with a suitable Lyapunov—Krasovskii functional when
estimating their derivatives to improve the performance of the uncertain NTNNs. A new
robust exponential passivity criterion is received and formulated in the form of LMlIs.
Moreover, a new exponential passivity criterion for NTNNs without uncertainty is also
examined. The main contributions of this work are highlighted as follows: (i) the criterion
proposed different from the NTNNs reported in [8,23-26]; (ii) the method suggested
here can be used for the general neural networks with implied distributed time-varying
delays [22] and the implied general neural networks implies [21]. Finally, we present some
results that show the potential results exceed the results that previously seen.

Notations. R" and R"*" denotes the n-dimensional Euclidean space and the set of all n X r real
matrices, respectively. B > 0 (B > 0) means that the symmetric matrix B is positive (semi-positive)
definite; B < 0 (B < 0) means that the symmetric matrix B is negative (semi-negative) definite. I is
the identity matrix with appropriate dimensions. x represents the elements below the main diagonal
of a symmetric matrix. z(t) denotes the upper right-hand derivative of z at t. z; = {z(t +6) : 6 €
[—max{dy, 7, 12},0]}. V(t,¢) = limg_,o+ sup{t +0,z;,9(t,p) — V(t,$)} /0 where $(t) is
the initial function that is continuously differentiable on C([— max{d, T, 112},0], R").



Computation 2021, 9, 70 30f 18
2. Preliminaries
First, we suggest the uncertain NTNNSs, which are the form

i) = —(A+AA(1)z(t) + (Wo + AWy (H))g(z(t))
+(Wh + AW (1))g(=2(t — ()))+(W2+AW2( ))2(t— (1))
+(Ws + AWs (1) fiL ) 8(2()ds + u(t), 20, (1)

y(t) = Cog(z(t)) + Crg(z(t - ( ) + o fi ) 8(2(5))ds + Cau(h),

z(t) = ¢(t), t € [-max{m,d, 12},0],

where z(t) = [z1(t),z2(t), ..., za(t)] € R" is the neuron state vector, y(t) is the output vector
of neuron networks, A = [a;] is a diagonal matrix with a; > 0,i = 1,2,...,n, W is the
connection weight matrix, Wi, W, and W3 are the delayed connection weight matrices. Cy,
Cy, Cy, and C3, are given real matrices, u(t) € R”" is an external input vector to neurons,
the continuous functions ¢(t) and ¢(t) are the initial conditions.

The delays 7(t), 6(t) and #(t) satisfy

0<m<tt)<n, ()< @
0<61 <8(t) <y, (1) <4y, 3)
0<m <nt) <, 4)

where 11, T, 61, &2, 711, 2, T; and J; are non-negative real constants.

Assumption 1. The activation function g(z(t)) = [g1(z1(t)), 2(z2(t)), ..., gu(zn(t))]T € R"
is assumed to satisfy the following condition

0< gi(C1) — gi(C2) <1
T a6

where 1;,i = 1,2,...,n are positive real constants, we denote L = [l;], i = 1,2,..,n as a
diagonal matrix.

g(0) =0, 01,02 €R, 01 #0,i=12,.,n, (5

The uncertainty matrices. AA(t), AWy (t), AW1(t), AW, (t), and AW3(t), are assumed
to be of the form

[AA(f) Wo(t) AWL(t) AW,(t) AW3]:EA(1’)[GH Gy G G G3],

where E, G;, and G;, i =0, 1,2, 3, are known real constant matrices; the uncertainty matrix
A(t) satisfies

A(t) = F()[I = JF(D)] ™, (6)
is said to be admissible where | is an unknown matrix satisfying
1-Jj" >0, @)
and the uncertainty matrix F(t) is satisfying
F(H)TE(t) > 0. ®)
Assumption 2. All eigenvalues of the matrix Wy + AW, (t) are inside the unit circle.

Then, the following Definition and Lemmas are methods that are use to prove our
main results.
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Definition 1 ([25]). The system (1) is said to be robust and exponentially passive from input u(t)
to output y(t), if there exists an exponential Lyapunov function V(z¢), and a constant p > 0 such
that for all u(t), all initial conditions z(to), all t > to, the following inequality holds:

V(zi) +pV(ze) <228 (Hu(t); t>to,
where V (z;) denotes the total derivative of V (z¢) along the state trajectories z(t) of the system (1)

Lemma 1 ((Jensen's inequality) [14]). Let Q € R™", Q = QT > 0 be any constant matrix, 5,
be positive real constant and w : [—&,,0] — R" be vector-valued function. Then,

-0y /tiﬁz w’(s)Qu(s)ds < —(/tiézw(s)ds)TQ(/t:hw(s)ds)-

Lemma 2 ([36]). Let f1, fa,..., fn : R" = R have positive values in an open subset D of R".
Then, the reciprocally convex combination of f; over D satisfies

min ) fl =) fi(t) +max)_g;(t)

{ailay >0,y a;=1} 5 & 7 8ij(t) iZj
subject to
() gi '(f)] }
R S Rg =g | 1 8] S oL
{gw S 8 [g,,i(t) fit ]~

Lemma 3 ([6]). For Q € R™", Q = QT > 0, and any continuously differentiable function
z : [oq, 03] — R", the following inequality holds:

o
(03 — ) / *sT T(s)Qz(s)ds > QIQ0; +30100, +50IQ0; + 70100,

0
/ / "2 (5)Qzi(s)dsde > 207005 + 40T Q0% + 60700,
0
0
/ / 2T(5)Qz(s)dsdd > 20700 + 40T Q0% + 607,00,
(%1
where

01 = 2(02) ~ 2(cn), O =2(0n) +2(e1) - (,ngl IR

6 %) (%]
/ z(s)ds — / / s)dsd6,
0 —01Joy (72 - (71

12 o2 o
Q4 = z(0n) +z(0y) — o _01/ z(s)ds+ =) / / s)dsd6

02
NCErAE / / / s)dsdfdu, Qs = z(07) — p—— /01 z(s)ds,
Qg = z(0m) + p— /(T z(s)ds — / / s)dsdo,
1

O3 = z(02) — z(01) +

3 o2
Qy =z(0n) — / z(s)ds + / / s)dsd6
— 0 (02 —(71
/ /UZ/U2 s)dsdodu, Qg = 2(0) — /‘72 (s)d
z(s)dsd0du, = z(0 z(s)ds,
02—171 3 0 8 ! 0p—0
0 I ALY ? 2(s)dsde,
9—2(01)—02_01/01 z(s)s+ =) / / s
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Q0 = S [Pasyds + 20 [ [P 2(s)asde
10—2(01)—02_01 /71 z(s) s+(02701)2 l/a1 ./0 z(s)ds

60 (% I %]
R /01 / /9 2(s)dsddu.

Lemma 4 ([37]). For any real constant matrices of appropriate dimensions M, S and N with
M = MT, and A(t) is given as constant by (6)~(8), then

M+ SA(H)N + NTA(#H)TST <o,

holds if and only if
M S BNT
[ x —BI BJT| <0,
* * =PI

where B is any positive real constant.

3. Main Results

This section intended to develop new criteria of system (1) with conditions (2)—(4).
We separate the consideration into two parts. In the first part, we consider the nominal
system, then suggest our main system, in which new criteria of systems are introduced via
LMIs approach.

Theorem 1. Assume that Assumptions 1 and 2 hold. For given scalars 61, 62, 64, T1, Tu, T4,
N1, N2, p with conditions (2)—(4) and p > 0, if there exist matrices P > 0, My, n = 1,2,---,6,
My M, My Ms
{ * Ma} =0 [ Ms
matrices D1 > 0, Dy > 0, U; > 0, i = 1,2,3,4, any appropriate dimensional matrices Xy, Y;, Z;,
k=12,---,7,1=1,2,---,5,i=1,2,3,4, satisfying the following

] >0, Nj >0, O]- >0, S]- >0,T,>0,j=1,2,3, any diagonal

A < 0 )

O1+0; Zi
>
|: * 014+03| — 0, (10)

then the system (11) is exponential passive, where A is defined in Appendix A.

Proof. Firstly, we propose the exponential passivity analysis for the nominal system

2(t) = —Az(t) + Wog(z(t)) + Wig(z(t — 8(t))) + Waz(t — (1))

+Ws [} 8(2(0) +u(t), >0, (1)

Second, modify the system (11) in terms of model transformation, which is the form
as follows

A = w(b), (12)
0 = —w(t)—Az(t) + Wog(z(t)) + Wig(z(t — o(t))) + Waz(t — T(t))
IV /t_”(t) 2(z(8) + u(t). (13)

Then, the Lyapunov—Krasovskii functional is designed for the system (11) and (13):

V(zi) = Z Vi(zt),

6
i=1
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where

Vi(zt)

Va(zt)

V3(zt)

Vi(zt)

Vs(zt)

Ve(zt)

= ()Pt +22 / (ri(81(5)) +dai(1is = gi(s))]ds,

e P e e
/ Ll [ i e

= 5/ / 20(s— t)z (s)N1z(s)dsdf
t—d
/ / / g2 (s— t)z (s)Npz(s)dsdfdu
t—d
/ / / 20(s—t) 5 s)N3z(s)dsd0du,
t—d1 Jt—o;

_ =0 szs t
= (0 —01) $)O12(s)dsd6
-
/t . /t ol/ 20(s—t) $)Ooz(s)dsdOdu
t u
t— 51
e

25-02T 02 (5)dsdOdu,
3

t
= / 21T (5)8,2(s)ds + 25127 (5)S,2(s)ds
t T2 t—7(t)

[N ()5 (s)ds

tTl

S 17/“72/ 24(5-0gT (2(s))(Ty + To)g (2(s))dsdo

i /t ;71/ 08T (2(s)) Tag (2(s) dsdf.

From the time derivative of V;(z;) along the trajectory of system (11) and (13), we obtain

Vi(z)

200 1'rp Qf Qf QI [
fiszods | fo Qb Qf Q|| o
g(z(t)) 0 QF Q7 Q|| 0

gz(t—d8t))| L0 Qf QF QLILO
(

+2¢T(z(£))Dy2(t) + 22T () Do L2(t) — 28T (2(t)) Daz(t)

227 (1)P [ — AZ(t) + Wog(2(1)) + Wig(z(t — 8(£))) + Waz(t — ()
W [ sleo)s ()| + [0 + [ sl

() )QT + ¢T (-0 <t>>Q4} [z(t) 2t 5()

- [, 2|+ [F0ek+ [T osal 060

t7‘52 t—0dy

4T (= 0008 20— 2(t = o) — [ s + "]
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+ [, Ol + ") 6)Qh + Tl = 00)Qh | | - w(r)
—Az(t ) + Wog(z(t)) + Wig(z(t — 6(t))) + Waz(t — (1))

s | tw) g(z(t) + u(t)} + 287 (2())Dy2(t) + 22T () Do L2 ()
29T (2(4)) Dyz(t) + 2027 (£) Pyz(t) + 4agT (2(£)) Dyz()

+4a |:ZT(t)L - gT(z(t))} Doz(t) — 2aV;(z4).

Calculating V5 (z;) leads to

Vy(z) < ezasl[g(z(t—m ﬂMl Mz} [g(z(t—«h)]

z(t—6))] | * Ms||g(z(t—6&))
T
el G [ %ﬂ G-

% (1) ﬁm H } e_mz){ 2(t = 8(1)) ]T
g(z(t)] [ * 8(z 8(z(t=4(1)))
My Ms]| | z(t—4(t))
<[ N lote i ] e
By employing Lemma 3 to estimate the integral terms in V3(z;), we readily obtain

. (5
Va(z) < Z()[51N1+ -(No + Na)]2(t) — e_zaéz{ﬂf[t5]],tN101[t51,t}

T T T
+307 s, N1 —s, + 50 115, 1 NI s, + 7 5,4 N1
X Qi 1 +204 (=) N2C5(¢ -5, 1) + 404 tt—ay,1 N2Q6 -5, 1

T T T T
+607 s, gN2O7 15, 5 + 208 (15, y N3 [1—5,,1) + 49 (5, N3

xQgpy_g, 1 + 6o _s, 1 N3Q0jt—s, 4 } —2aV3(zt),

where

Qulor, 2] = 2(e) ~ 2(01), Qalon, 2] = 2(0) +2(01) — = [“2(e)ds,

02—01
6 ) (%]
O30y, 03] = z(02) — z(0q) + / z(s)ds— / / $)dsdo,
0y — 01
Oulon,02] = 2(03) + 2(01) — 2> /”2<>d+ //"2 5)dsde
401,02 = Z(02 z(01 02— 01 Jo z(s)as 02_01 S
(%
/ / : / s)dsdodu, Qs[oy, 0] = 2() — / 2(s)ds,
0'2—(7'1 0y — 01
2 (%] (%]
Qgloy, 2] = z(0m) + / z(s)ds— / / $)dsdo,
02_(71 ]

Qyloy, 03] = z(0n) — 3 /02 (s)ds+ =) / / s)dsd6

(%} o
(=)’ / / / s)dsdfdu, Qsln, 02) = 2() = 0—01/ z(s)ds,

4 (%3 (%)
Qloy, 03] = z(oy) — / z(s)ds + / / s)dsdo,
1 (2 —1)?

02 — 01 Jo
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9 (%] 36 o [0
Q10[0'1,0'2] = 2(0'1) — o /1 Z(S)dS + W (/(71 /9 z(s)dsd9

o
/ /2/ delexl t—(52<0'1<0'2<t
0'2—0'1

By calculating the derivative of Vy(z;), we obtain

. . 5y — 01)? . _
Vi) < z(t)[(aszsozol+%(oz+ogﬂz<t>fe 2nts (g, — 5,)
t—& t—o t—&
X / 1 2T (s)Opz(s)ds — e~ 212 / 1 / 1l §)0yz(s)dsd6
t—0, t
t—o
*2"‘52/ 1/ $)O3z(s)dsd0 — 2aVy(z;)
t t—oo
5 — 8 _
< Z'(t)[(52—51)201+%(Oz+03)}2(ﬂ—ff 2“52{(52—51)

. /tt—é‘(t) T(5)0u(s )d5+(52—51)/t;fl T(5)012(s)ds

123
t=5(t)  pt—o(t) 16 t—dy
/ / T OzZ dS+ / V4 OZZ )d
t

t—6, té(t
0y — Ot O d O
+(6 <>>/H(t) T(5)0xz(s)ds + [ /”2 32 (s

t—6 t— (f)
o oy 0 00 o) [ s st >d}

—5y
—20Vy(z4).

Since O7 > 0,07 > 0 and O3 > 0, using Lemma 3, we observe that

t7§1 tfcs(t)

e 2a ) (5, 5)) / 2T(s)02(s)ds + (6, — 61) / £"(5)012(s)ds
t—5(t) t=6;

t—6

t—d(t)
—6,

+(o-o1) [

t—8(t)

2T (5)0pz(s)ds + (5(t) — 61) /t Z'T(S)Og,z'(s)ds}

o 5 — &
< 2 52{ - (((S(zt)—l(sz) <QlT[t(s(t),t(sl}(Ol + O2) M t—s(t),4—-5,)
+307 (1 s(6),t—6,) (01 + 02) Qa—s(t) t—5,] + 50 [t (4,45, (O1 + O2)

X (r5(),4-5,] T 7QZ[t—(5(t),t—(51] (01 + 02)04[t—(5(t),t—51])
+ (Q{[té(t),tél}OZQ{ t—s(6)t—6,] + 3 [t—5(1),6—6] O2 2t —s(t) 4—1]

+503 (15016, 0202 t—s(t)4—0,] + 7 [t(S(t),t51}0202[t—(5(t),t—61]>

6y — 6
((522—5(3) (QlT -t t-0(0)] (01 + O03) 450

+307 1 g, 0504101+ 03) Dt ,.-5))] + 53 g, 45017 (O

+03) 3 1—s, 1—o(1))] T 7% 151ty (O1 + O3)Q4[f—5z,t—5(t))])
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+ (QlT -1 O3 g -5(0)] + 302 83,50 O3 02—
500 (1_g, 1 5(1)) O3 31—y t—o(e))] + 704{“_52,15_5(1‘))]0304[t—52,t—5(t))]> }

Next, we use the reciprocally convex combination technique to estimate inequality
following

t_§1 t_é(t)
_ ,—2ad _ .T . B .T .
e {(52 51)/#50)2 (5)O12(s)ds + (62 51)/&52 2% (s)012(s)ds

t—4 t—d(t)

2T (s)Oa2(s)ds + (5(t) — 1) /t . Z'T(S)ng'(s)ds}

+o2=0) [

t—8(t)

IN

—e 2% {QlT[t(;(t),tMOl O—st),4-8,] T 302T[t—5(t),t—51]01 Da(t5(t)4-01]

JrSQg[tfé(t),tf&l]0103[137(5(1‘),15751] + 701{#5@);,51}0104[t75(t),t,51]
O (5501 O1 -t —s(8)] + 3 (15 1—6(0) OL 2]t -5(1)]
+5Q3T[t7(52,t7(5(t)}0103 [t—dyt—0(t)] T 7Q4T[t—52,t—5(t)]0104[t—52,t—5(t)]
+01T[f—5(t),t—51}ZlQl[f—%t—&(f)] + QlT[t—b‘z,t—(S(t)]ZlTQl[t—é(t),t—(sl]
303 (501601220006 1—6(0) + 3 (15,6501 22" Qaft—s(6),t-5]
508 11501601 233 -6 t—6(5] T 5 (1—sy1—5(1)1 23 Blt—6(t)4—01]

7O (1 5(0) -0 2410y 0-5()] + 7 (165 16t 24 Qalt—s(t)1-41) }

Then, we estimate V4(z;) as

(62— 61)?

Va(z) < 2(t)[(62—61)%01 + >

(Oz + 03)]Z(t)
_p—20d {zﬂg[té(t),t5110205 (t—o(t)t—5] T 4Q6T[t75(t),t761]o2

X Q61— s5(t),-01] + 697 [t-5(t),1-61) 027 (1—5(1)1-61] + 28 [t—sp—5(1)]
XO2O5(4 5,1 —6()] T 4Q6T[t752,t75(t)]0206[1‘*‘52/15*‘5“)]

6007 (1, 15027 [t~ 5(0)] 2D [t—(t) 45, O3 1 5(1) 4]
4O (1 5(6) -6, O3 1—s(0)1-81] T 60t 15, O30 —()1—1]
208 115, 150 03155 55 T4 15, 1 5(1) O3 0[1—83,1—6(1)]
+601T0[t—52,t—5(t)]O3QlT0[t—(52,t—§(t)] + QlT[t—zS(t),t—él]Olﬂl [t—o(t),t—01]
303 (15060 0102t 5(8)4—61] + 50 150y 1—6,] O1 Bt —s(t)4—01]
7O (151,66, 01 lt—s(8)0-01] + N 13 161 O 18151
307 (15166 O102t—s5 55 T 50 155 151y 010 1—63, 1—6(1)]
7% 1y 161 O1 U156 + U (1—s(t) 161 21 [165,5(1)]
O sy 501 71 Qie—s)-01] 3 (15t 1611 2202185 1—5(1)
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+3Q2T[t762,t75(t)] Z;QZ[tfé(t),tﬂSl] + 503T[t75(t),t751]Z3Q3[t7¢52,t75(t)]
505 (15, 150023 3 (t—s(t)—e) T 7 [t 5(0) 16, 244 [t—631—5(1)]

+7QZ[t,52,t,5(t)]Z4TQ4 [t—o(t),t—01] } — 2aVy(zt).
The times derivative of V5(z¢) is calculated as

Vs(zi) < z2T(£)(Sy+ Sy 4 S3)2(t) — e 22T (t — 1) S12(t — 1)

e 220z T (t — (1)) Soz(t — T(t)) + gz (t — T(£))S2z(t — (1))
—e 2Tzl (t — 1)S32(t — 1) — 2a V().

Further, from Lemma 1, we receive Vi(z;) as follows
. t
Voler) < "G [BT+ BT +ATs]a((0) ~ e 2 [ gTa(s)asTy
-2
t t t
< [ gends—e e [ gTE)asT [ gla(s))ds
=1 t=n(t) t=n(t)
t t
e [ gT(a(s))dsTs [ g(z(s))ds — 2aVi(z).
t—m t—m

Since 0 < fi(_s) <1,i=12,...,n, for diagonal matrices U,, > 0, m = 1,2,3,4,

we have
()L - g (z(0) |ulg(z(1)) = 0, (14)
2Tt =o)L —g" (z(t = 01)) | Ul g(=(t = 61) 2 0, (15)
2T (t=8())L — g (=(t — 6(1) | Ul g(z(t = 6(1))) = 0, (16)
2T (t— o)L — g7 (2(t — )| Uf g (2(t — &) > 0. (17)

Through the use zero equations, for any appropriate dimensions Xy, k=1,2,...,7,
andY;, | =i=1,2,...,5, we obtain the following equations

27 ()XT + 27 ()X + g7 (2(0)XF + g (=(t — (1)) X] + 27 (¢ — (1)) X]
t

AR ACOE ul ()XF] [ = 2(t) — Az(t) + Wog(=(t))
e

+Wig(z(t —6(t))) + Waz(t — (t)) + W3 /tt”(t) g(z(s))ds + u(t)] =0, (18)

z[zT(t)YﬁwT(t)sz} [z’(t) - w(t)] =0, (19)
2T ()] +27( Y4+/ (s)as¥T] [2(t) — (¢ — 8(1))
- /t i(s(t)z"(s)ds} —0. 20)

Recalling (14)-(20) and estimation of the time derivative of V(z;) , it is apparent that

Vi(zt) +2aV(z) —2y(Hu(t) < ET(H)AE(L), (21)
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where ¢(t) = { (), z(t = b1), z(t = 6(1)), (f—éz) 8(z(t)), g(z(t — b1)), g(z(t = 6(t))),

gz(t—6)),2(t), [, 2(s)ds, ‘U(t)us Ji=s,2(5)ds, 5 Jiss, fe s)dsdo, 5 3 Jis, Ju Jo 2(5)ds
t—5 t—8y t—b t— 5 t—5 t 5
d@du,“) 5 ft (5(1t )ds 7(5() 5 i 5(1) 0 ()dsd@ (GO=S x [,_s 1 f 1 1z(s)
t=5(t) pt—o(t) () (t)
dsdfdu , 52500 5 ft , m t—6, 9 ()deG/ (52_(15(13))3 t—0, fu

100 o (s )dsd@du, z( - Tl), (t—T(D), 2(t— ), [, 8(z()ds, [, 8(z(s))ds, [,
g(z(s))ds, u(t)} and A is defined in (9). From assumption (21), it is readily visible that

V(zt) +2aV(z¢) — 2y(Hu(t) <0, t>0,

" V() +oV(z) < 20(0ue),  t20,

where p = 2a. Therefore, if the LMIs conditions (9) and (10) hold, we conclude that the
system (11) is exponentially passive. This proof is complete. [

Moreover, we suggest the robust exponential passivity for uncertain NTNNs with
mixed interval time-varying delays of system (1). It is apparent that system (1) is robustly
exponentially passive, from which we summarize the corresponding result in Theorem 2.

Theorem 2. Assume that Assumptions 1 and 2 hold. For scalars 1, 83, 84, T1, T2, Tg, 11, W2, P

B with conditions (2)—(4), p > 0 and B > 0, if there exist matrices P > 0, M, n =1,2,--- ,6,
My M, My Ms . .

{ . MJ 0 [ . M, >0, N]- >0, O]- >0, Sj >0, T] >0,j=1,2,3, any diagonal

matrices D1 > 0, Dy > 0, U; > 0, i = 1,2,3,4, any appropriate dimensional matrices Xy, Y;, Z;,

k=12,..-,7,1=1,2,---,5,i=1,2,3,4, satisfying LMIs (9), (10) and

A T PBIY
x —BI BIT| < O
* * —BI

(22)

then the system (1) is robust exponential passive.

Proof. Based on Theorem 1, if A, Wy, Wy, W, and Wj are replaced with A + EA(t)G,, Wy +
EA(t)Go, W1 + EA(t)G1, Wy + EA(t) G, and Wi + EA(t)Gs, respectively, a new criterion of
the uncertain NTNNSs (1) is equivalent to the following conditions,

A+T AT +TEAMTTT <0, (23)
where Ty = [(P+ Qo + X2)"E,0,0,0, (Q11 + X3)"E, 0, (Qu2 + X4)"E, 0, X{ E, Q[ E,
0,0,...,0,XE,0,0,X]E,0,XE] and T, = [ — G,,0,0,0,Go,0,G1,0,0,...,0,G,,0,0,
N—— N——

11items 14 items
G3,0,0]. By Lemma 4, an adequate condition ensuring

A T; prl
x —BI BIT| < O
* * —BI

is that there exists a scalar § > 0. Together with the similar proof of Theorem 1, we have
V(zt) +pV(zt) < 2y(t)u(t), t>0.

Based on Definition 1, the uncertain NTNNSs (1) is robustly exponentially passive. This
completes the proof. [
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4. Numerical Examples

In this section, we allow the numerical examples to show the performance of the
systems (1) and (11).

Example 1. Consider the NTNNs (11), with the parameters [2,7,24] being as follows:

20 [y 03 ~ o2 01 015 0
A= [0 2}’ Wo = [0.3 0.5}’ W= {0.1 0.2}’ We = { 0 0.15}'

Ws — {8 8} L= B ﬂ () = 0, y(t) = 0.

By applying Theorem 1, we find that the LMIs (9) and (10) are feasible. In Table 1, we compare
the maximum allowable bound v, where 61 = 0.5, 0p = 2.0, 4 = 0.5, », = 1.0, and 6; = 0.9
for ensuring Theorem 1 of the system (11), which the potential of our result exceeds those previous
results ([2,7,24]).

Table 1. The maximum upper bound of «y for different 7.

T4 0.5 0.8
Park and Kwon [2] 1.65 -
Tu et al. [24] 2.66 -
Manivannan et al. [7] 3.94 3.43
Theorem 1 4.06 3.68

Example 2. Considering the uncertain NTNNs (1), the parameters [22] are as follows:

40 0.6 04 0.9993  0.3554 00
A= [o 4]’ Wo = [—0.5 0.4}’ Wi = [0.0471 —0.2137]’ We = [o o]’

03978  1.3337 02 0 06 0 03 0
Ws = [—0.2296 0.9361}’ Ga= [0 0.2]’ Go= {0 0.6}’ C1= {0 0.3}’

Gy = {O 0], Gs = [0(')4 O(.)AJ’ L=E=C=C=C=1I C=0.

Through adaption of Theorem 2 and using the Matlab LMI toolbox, the feasibility of the aimed
method holds. A similar result of this method was shown previously in [22] where 6(t) = 1 + sin(t),
and 11(t) = 1.5 + cos(t). Meanwhile, we show that the robust exponential passive of system (1) is
guaranteed by calculating the maximum allowable bound of p for 6, = 2.0, 71 = 0.0, 5, = 2.5,
different 64, and various 6, in Table 2.

Table 2. The maximum upper bound of p for different é; and various é;.

4 51 =0.0 51 =0.1 51 =02
0.1 0.5224 0.9252 0.4510
0.3 0.3204 0.5790 0.3782
0.5 0.1734 0.3362 0.2642
0.8 0.0092 0.1080 0.0804

Example 3. Consider the uncertain NTNNs (1), with the parameters [21,22] being as follows:

4 0 0 -05 -1 -1 0 0
A= [0 7]’ Wo = [0.5 0 } Wi = [—1 —2]’ Wo=Ws = [0 0}'
o _[002 004] . _[0.02 0.04] . _ [0.03 006

“=10.03 0.06]" ° (002 004]” 7' |0.02 0.04

L=E=1Cy=C =C=1 C,=0.

], Gy =G3 =0,
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This example shows the maximum bounds of the allowable values p where 61 = 0.0 and
0y = 0.16 to guarantee that system (1) is the robust exponential passive. The list in Table 3 shows
that the potential of our results is superior to those in [21,22].

Table 3. The maximum upper bound of p for different é;.

94 0.1 0.3 0.5 0.9
Wu et al. [21] 5.4753 5.4121 5.3518 5.2864
Duetal. [22] (N =3,M = 3) 6.0297 5.8124 5.7735 5.7294
Theorem 2 6.0374 5.9652 5.9634 5.9634

Example 4. Consider the uncertain NTNNs (1), the parameters being as follows:
4 0 —-04 O 0.1 0.2 01 O
A= {0 5]’ Wo = {—0.1 0.1]’ W = [—0.15 —0.18]’ Wa = [o 0.1]’
041 -—-0.5 0 0 0 0
Ws = [0.69 0.31]' Ga = {0.1 0.1}’ Co =G [0.02 0.03}'

0 0 0 0
G2 = [0.001 0.001}' Gs = [0.02 0.02}' L=E=C=C=CG=CG=1

We confirm the feasibility of the criterion of Theorem 2 by using the Matlab LMI toolbox,

where 0.5 < 6(t) < 4,6; =0.5,05 < 1(t) <35 17 =0.705<75(t) <1, p = 0.09%4, of
which the feasible solution is as follows:

p— [1.3322 0.2119],

1.4453 0
0.2119 1.0924 !

Dl:{ 0 14453

D, = {0.9707 0 ] M, — [0:1220 0.0042}
0 09707) 0.0042 0.1062]"
M, — | ~0:1326 0.0016} M, {0.3416 —0.0051}
| 0.0016  —0.1384]’ —0.0051 03610 |’
M, — [47528 0.3159] M, — [~20930 —0.2243}
03159 4.4572]" | —0.2243  —0.9815]’
M, — 32592 0.9770] N, — [00509 0.0031]
0.9770 7.3324]" 0.0031 0.0370 ]’
0.7335 0.0602 0.0769 0.0033
Nz =10 3{0.0602 0.5430]' Ns = [0.0033 0.0656}’
Oy — {0.0012 0.0001} 0, — [0:0016 0.0001]
0.0001 0.0008 | 0.0001 0.0011]"
05 = [0.0016 0.0001} 5, = [0.4670 0.0273]
0.0001 0.0011]" 0.0273 0.3901]"
5, — [0:0040  0.0003] 5, — [0.0039 0.0003}
0.0003 0.0028]" 0.0003 0.0027 |’
1, — [0:2694 0.0200] I, — [3.2174 0.0233]
0.0200 0.1852)" 0.0233 25143
1.0763  0.0798 ~1.1925  0.0000
5= lo.0798 07395 Qi = 103{ 0.0000 —1.1924}

1.1927 0.0001
_ 3

Q2 =10 [0.0001 1.1926}'
04— 0.2096 0.0098
47 10.0098 0.0691|’

0, — [05234 —0.0422
37 | -0.0422  —0.4805)’
~1.1923  0.0000
— 103
Qs =10 [0.0000 —1.1924}
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0 103[ 1.1927 —0.0000]
6 - s

—0.0000 1.1928
O — 0.2180 0.0171
8= 10.0171 0.0950|’

_ [-05771  —0.0465

Q7 = [—0.0465 —0.3998}’
_ [09438  —0.6339
Qo = [—0.6339 —0.7053]'

O — | 700146 —0.0911 0, — [ 04912 0.8620
1071200911 0.0433 |’ = 108620 0.6054)’
Opp — | 707129 03630 s _10-3[701163 —0.0042
27 1-0.3630 —1.0636] e —0.0042 —0.0458]"
—0.2203  0.0787 —0.0204  0.0252
—10-6 —_10-8
Z2=10 [0.0787 —0.5239]' Z3 =10 [0.0252 —0.1607]’
—0.4913  —0.0730 81698 0
— -9 —
Z4=10 [—0.0730 —0.2132]' ul_{ 0 8.1698}'
(01671 0 05990 0
u2*_ 0 0.1671}' u3[ 0 0.5990}
U, — [00479 0 . _ [ 64830  —0.7995
7100 00479 17107995  4.5869 |’
y, _ [25:5529  —4.0582] . _ [20164 05346
27 | -4.0582  21.7320 | 37 |0.5346 —0.2008]"

y, _ [~15646  —0.1081] . _ [~06444  0.0799
+ 7 [-01081 02932 |’ >7 100799 —0.4607 |

X — [—2.9287  0.5075 ', X, — [—6.6621  0.9600 }

| 05075 —1.7624] | 0.9600 —4.4849
new[ o 00 e )
510 o0 tma =150 soms)
Ys = 10° -—161.3350 71(_)1’23(;0- , and B = 87.2598.

Figure 1 gives the state response of the uncertain NTNNs (1) under zero input, and the initial
condition [—0.2,0.2], the interval time-varying delays are chosen as 6(t) = 3 + 0.25|sin(2t)|,
T(t) = 3+ 0.35|sin(2t)|, and n(t) = |cos(t)|, the activation function is set as g(z(t)) =
tanh(z(t)). Meanwhile, we sketched the solution trajectory of the system (1) of Example 4 with
initial conditions [3.5,3.5] in Figure 2.

0.2

State response (z(t}))
o

. . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20
Time (t)

Figure 1. The state response of the system (1).
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Figure 2. The solution trajectory of the system (1).

5. Conclusions

In this paper, we considered the robust exponential passivity analysis for uncertain
NTNNs with mixed interval time-varying delays including discrete, neutral, and dis-
tributed delays. We concentrated on interval time-varying delays, in which the lower
bounds were allowed to be either positive or zero. For the potential of results, we si-
multaneously adopted the model transformation, various inequalities, the reciprocally
convex combination, and suitable Lyapunov-—Krasovskii functional. In the first place, a
new exponential passivity analysis for NTNNs was derived and formulated in the form
of LMIs. Secondly, a new robust exponential passivity analysis for uncertain NTNNs
was obtained. Note that our proposed method can be adapted to many criteria such as
exponential passivity of uncertain neural networks with distributed time-varying delays,
the exponential passivity of uncertain neural networks with time-varying delays, stability
of NTNNs with interval time-varying delays. Lastly, the feasibility of the aimed methods
was shown in numerical simulations by applying our method. We achieved the aim to
receive the maximum values of the rate of convergence, for which our results exceeded the
results that were previously seen. We also introduced a new example to demonstrate the
existence of a solution to the proposed method.
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Appendix A

A=[Nijlrxar, Nij=AN, ij=12...,27,

A =20P — (P+ Qo+ X)) A= AT(P+ Qo+ X2) + Q1+ Qf + Q5+ Q5
+My +24LTDI + 24Dy L + Y3 + YT — e72%1(16N; + 12N3),

Arp = —4e 21Ny, A3 =—0Qf — QL — Y] + Yy, A5 = (P+ Qo+ X)Wy
+Q3+ Q7 — AT(Qu1 + X3) +2aDT — 24Dy + Ms + LUT,

A7 = (P+Qo+X2)"Wi + Qs+ Qs — AT(Qi2 + X4), A1p = DL — X5
—ATX1, Ao =—Qf —QF + Qo+ Q6 — AQi0— Y3 + Y5, A111 = —Qo,

Aq1p = e 2 (60N] +12N,), Aq13 = —e 2*1(360N; + 120N}),

Aq14 = e 2*91(840N] + 360N,), A2 = (P4 Qo + Xo)TW, — ATXs,

A5 = (P+ Qo+ Xp) W3 — ATXe, Aig7 = PT+ Q5 + X5 — ATXy,

Agp = e UMy — e 21 (16N; + 12N3) — e 2*2(160; + 120,),

Aoy = —e 202(Z) + 37, + 575 +7Z4)7 — 4672220, Apy = e 2*2(Z1 — 327,
+5Z3 —7Z4)T, Apg = e 2% My + LUF, Ag1p = e 291 (120N + 72N3),

Ag13 = —e 201(480N] 4 240N3), A 14 = e 2%%1 (840N + 360N3),

Ags = e 22(600; +120,), Ay 16 = —e 2%2(3600; + 1200,),

Ap 1y = e 2%2(84001 +3600,), Ag 1 = e 2*2(6Zy — 3075 + 84747,

Ag19 = e 292(60Z3 — 420Z4)T, Ao = 840e 242 7T, A3z = (8, — e 2%2) M,
—Yy = Y] + e 2(Z) — 37, + 575 — 7Z4)T + e 2%2(Z — 37, + 573
—774) — e 22(320] + 120, 4 1203), Azy = —e %2 (Zy + 37, 4+ 573
+7Z4)" —4e7220,, A35 = —Q3— Q7, Asy = —Qs — Qs + (34
—e ) M5 + LUJ, Az10 = —Qa— Qo — Y§ — Y5, Az1s = ¢ *2(67Z,
—30Z3 + 84Z4)T + 7242 (1200, + 7203), Az 16 = e 2%%2(60Z3 — 420Z,)
—e722(4800; + 24003), Az 17 = 840e 227, + ¢~ 2*%2(8400; + 36003),

Azjg = e 22(6Zy 43075 + 84Z4) T + 7222 (600, + 120,),

Az19 = —e 22(60Z3 4 420Z4)T — e72%2(3600; + 1200,),

Azpo = 840e 22 7T 4 ¢720%2(8400; + 3600,), Agy = —e 22 M
—e72%%2(160; +1203), Agg = —e 22 M, + LUJ, Ayq5 = e 22(62,
+30Z3 4 84Z4), Ag1s = —e 2*%2(60Z3 + 420Z4), Ay17 = 840e 227,

Ag1g = e 22(12001 4 7203), Ag19 = —e~2%2(4800; + 24003),

Aspo = e 2%%2(8400; +36003), Ass = (Q11 + X3) Wo + W( (Qu1 + X3)
+Me — Uy —U{ +75(T1 + To) + 177 T3, As7 = (Qf; + X3)" Wy
+Wg (Qi2 + X4), Asg = D1 — Dy — X3 + W X1, As10 = —QF — QF
+Wg Qio, As11 = —Q11, Aspa = (Qu1 + Xz) T Wa + W X5,

Asps = (Qu1+ X3)"Ws + Wi X6, Aspr = Wy X7+ X3 +Qf; —Cf,

Ao =e 2Mz — Uy — Uy, A7z = (Quz + X4) Wi + WY (Qu2 + X4)
+(84— e 22)Mg — U — U3, Azg = — X4 + W] X1, Az10 = —Qq4 — Qs
+W{ Qi0, Az11 = —Qi2, A720 = (Qu2 + Xa)TWo + W] X5,

A725 = (Qua + Xa) W3 + W] X¢, A7y = WIXy + X +Qf, — T,
2

5
Agg = —e 22 MTI — Uy — U], Agog = Y1 + Y] — X1 — XT + 82N, + El(Nz

+N3), Ag11 = =YL + YT, Agoo = XT Wy — X5, Agos = X{ W; — X,
Agopr = —X7+ X1, Arp10=-Q2— QF — Qs — Qf = Ys — Y, Ao = —Qfy,
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A1020 = QIgWa, Atgps = QlgWa, A1027 = Quo, Ara1 = —Ya — Yy + (8 — 61)?
(6 — 071)?
2

A1p12 = —e 21 (1200N; + 720N, 4 552N3), A1z 13 = e 2491 (5400N; + 480N,
+2040N3), A1p14 = —e~2%1(10080N; + 10080N; + 3240N73),

A1313 = —e 2*91(25920N] + 3600N, + 7920N3), A1z14 = e~ 2*%1(50400N;
+8640N, + 12960N3, A1g14 = —e~2*91(100800N; + 21600N; + 21600N3),

Ais15 = —e 2*92(12000; + 720, + 55203), Ais,16 = € 2*2(54000; + 4800,
+204003), Ags17 = —e 2%%2(100800; + 10800, + 324003 ),

Ais1g = —e 2%92(127; + 18073 4 1008Z4)T, A1510 = e~ 2%2(360Z5 + 5040Z4)T,

Aisp0 = —10080e 22 7], Ajg16 = —e~242(259200; + 36000, + 792003),

A1s,17 = € 2*%2(504000 + 86400, 4 1296003), A1s15 = e~ 2*2(360Z3
+5040Z4)T, Ayg10 = —e 202 (72075 + 25200Z4)7,

Aqe,20 = 50400622 7] A1y 17 = —e72%2(1008000; + 216000, + 2160003),

A1718 = —10080e 2271, A1719 = 50400222 7], A1750 = —100800e %2 7],

Aig1g = —e 2*92(12000; + 720, + 55203), Aig19 = e~ 2*2(54000; + 4800,
+204003), Aigoo = —e~2*2(100800; + 10800, + 324003),

Aqg19 = —e2%92(259200 + 36000, 4 792003), A1920 = e~ 2%%2 (504000,
+86400, + 1296003), Agg20 = —e2%%2(1008000; + 216000,
+2160003), Ag1p1 = —e 1S3, Ajpop = (17 — e 22)Sy + XI W,
+WoXs, Ay ps = Xa Wa + WaXe, Amor = Xo + W Xy,

Axzpz3 = —€ 2281, Ajaps = — 22Ty, Agsps = —e 22T, + XTW; + W3 X,

Axsor = X{ + WIXy — CI, Agep = —e 22Ty, Aoy = Xy + XJ — C3— CJ,

xO01 + (OQ+O3)+51+52+53/

and the other terms are 0.
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