Transient Pressure-Driven Electroosmotic Flow through Elliptic Cross-Sectional Microchannels with Various Eccentricities
Abstract
:1. Introduction
2. Preliminaries on the Elliptic Coordinate System
2.1. Elliptic Coordinate System
2.2. Mathieu Functions
- is symmetrical about both x- and y-axes,
- is symmetrical about x-axis but antisymmetrical about y-axis,
- is antisymmetrical about x-axis but symmetrical about y-axis,
- is antisymmetrical about both x- and y-axes,
3. Mathematical Modeling
3.1. Electroosmotic Force
3.2. Fluid Velocity
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Beskok, A.; Korniadakis, G.E. Report: A model for flows in channels, pipes, and ducts at micro and nano scales. Nanoscale Microscale Thermophys. Eng. 1999, 3, 43–77. [Google Scholar] [CrossRef]
- Araki, T.; Kim, M.S.; Suzuki, K. An experimental investigation of gaseous flow characteristics in microchannels. Nanoscale Microscale Thermophys. Eng. 2002, 6, 117–130. [Google Scholar] [CrossRef]
- Lee, H.B.; Yeo, I.W.; Lee, K.K. Water flow and slip on NAPL-wetted surfaces of a parallel-walled fracture. Geophys. Res. Lett. 2007, 34, L19401. [Google Scholar] [CrossRef]
- Duan, Z. Slip flow in doubly connected microchannels. Int. J. Therm. Sci. 2012, 58, 45–51. [Google Scholar] [CrossRef]
- Mao, Z.; Yoshida, K.; Kim, J.W. A droplet-generator-on-a-chip actuated by ECF (electro-conjugate fluid) micropumps. Microfluid. Nanofluid. 2019, 23, 130. [Google Scholar] [CrossRef]
- Xie, J.; Hu, G.H. Computational modelling of membrane gating in capsule translocation through microchannel with variable section. Microfluid. Nanofluid. 2021, 25, 17. [Google Scholar] [CrossRef]
- Hunter, R.J. Zeta Potential in Colloid Science: Principles and Applications, 1st ed.; Academic: London, UK, 1981; pp. 1–10. [Google Scholar] [CrossRef]
- Li, D. Electrokinetics in Microfluidics, 1st ed.; Elsevier: London, UK, 2004; pp. 8–28. [Google Scholar] [CrossRef]
- Kim, M.; Beskok, A.; Kihm, K. Electro-osmosis-driven micro-channel flows: A comparative study of microscopic particle image velocimetry measurements and numerical simulations. Exp. Fluids 2002, 33, 170–180. [Google Scholar] [CrossRef]
- Beddiar, K.; Fen-Chong, T.; Dupas, A.; Berthaud, Y.; Dangla, P. Role of pH in electro-osmosis: Experimental study on NaCl–water saturated kaolinite. Transp. Porous Med. 2005, 61, 93–107. [Google Scholar] [CrossRef]
- Bandopadhyay, A.; Chakraborty, S. Electrokinetically induced alterations in dynamic response of viscoelastic fluids in narrow confinements. Phys. Rev. E 2012, 85, 056302. [Google Scholar] [CrossRef]
- Chakraborty, J.; Ray, S. Chakraborty, S. Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressure-driven microfluidic devices. Electrophoresis 2012, 33, 419–425. [Google Scholar] [CrossRef]
- Chinyoka, T.; Makinde, O.D. Analysis of non-Newtonian flow with reacting species in a channel filled with a saturated porous medium. J. Pet. Sci. Eng. 2014, 121, 1–8. [Google Scholar] [CrossRef]
- Shen, Y.; Shi, W.; Li, S.; Yang, L.; Feng, J.; Gao, M. Study on the electro-osmosis characteristics of soft clay from Taizhou with various saline solutions. Adv. Civ. Eng. 2020, 2020, 6752565. [Google Scholar] [CrossRef]
- Arulanandam, S.; Li, D. Liquid transport in rectangular microchannels by electroosmotic pumping. Colloids Surf. A 2000, 161, 89–102. [Google Scholar] [CrossRef]
- Reshadi, M.; Saidi, M.H. Firoozabadi, B.; Saidi, M.S. Electrokinetic and aspect ratio effects on secondary flow of viscoelastic fluids in rectangular microchannels. Microfluid. Nanofluid. 2016, 20, 117. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Lakhtakia, A. Debye-Hückel solution for steady electro-osmotic flow of micropolar fluid in cylindrical microcapillary. Appl. Math. Mech. Engl. Ed. 2013, 34, 1305–1326. [Google Scholar] [CrossRef] [Green Version]
- Tseng, S.; Tai, Y.H.; Hsu, J.P. Ionic current in a pH-regulated nanochannel filled with multiple ionic species. Microfluid. Nanofluid. 2014, 17, 933–941. [Google Scholar] [CrossRef]
- Tsao, H.K. Electroosmotic Flow through an Annulus. J. Colloid Interface Sci. 2000, 225, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Na, R.; Jian, Y.; Chang, L.; Su, J.; Liu, Q. Transient electro-osmotic and pressure driven flows through a microannulus. Open J. Fluid Dyn. 2013, 3, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Goswami, P.; Chakraborty, S. Semi-analytical solutions for electroosmotic flows with interfacial slip in microchannels of complex cross-sectional shapes. Microfluid. Nanofluid. 2011, 11, 255–267. [Google Scholar] [CrossRef]
- Chuchard, P.; Orankitjaroen, S.; Wiwatanapataphee, B. Study of pulsatile pressure-driven electroosmotic flows through an elliptic cylindrical microchannel with the Navier slip condition. Adv. Differ. Equ. 2017, 160. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.H.; Chun, M.S.; Jung, H.W. The geometry effect on steady electrokinetic flows in curved rectangular microchannels. Phys. Fluids 2010, 22, 052004. [Google Scholar] [CrossRef] [Green Version]
- Vocale, P.; Geri, M.; Cattani, L.; Morini, G.L.; Spiga, M. Numerical analysis of electro-osmotic flows through elliptic microchannels. La Houille Blanche 2013, 3, 42–49. [Google Scholar] [CrossRef]
- Srinivas, B. Electroosmotic flow of a power law fluid in an elliptic microchannel. Colloids Surf. A Physicochem. Eng. Asp. 2016, 492, 144–151. [Google Scholar] [CrossRef]
- Parida, M.; Padhy, S. Electro-osmotic flow of a third-grade fluid past a channel having stretching walls. Nonlinear Eng. 2019, 8, 56–64. [Google Scholar] [CrossRef]
- McLachlan, N.W. Theory and Application of Mathieu Functions, 1st ed.; Clarendon: Oxford, UK, 1947; pp. 1–394. [Google Scholar]
- Liu, B.T.; Tseng, S.; Hsu, J.P. Effect of eccentricity on the electroosmotic flow in an elliptic channel. J. Colloid Interface Sci. 2015, 460, 81–86. [Google Scholar] [CrossRef]
- Cohen, Y.; Metzner, A.B. Apparent slip flow of polymer solutions. J. Rheol. 1985, 29, 67–102. [Google Scholar] [CrossRef]
- Tretheway, D.C.; Meinhart, C.D. Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 2002, 14, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, E.L. Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique. J. Math. Pures Appl. 1868, 13, 137–203. [Google Scholar]
Name | Symbol | Value | SI Unit |
---|---|---|---|
Focal length | c | ||
Eccentricity | e | - | |
Fluid density | |||
Fluid viscosity | |||
Fluid permittivity | |||
Pressure gradient in z-axis | |||
Reciprocal of EDL thickness | |||
Surface potential | |||
External electric field | E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Numpanviwat, N.; Chuchard, P. Transient Pressure-Driven Electroosmotic Flow through Elliptic Cross-Sectional Microchannels with Various Eccentricities. Computation 2021, 9, 27. https://doi.org/10.3390/computation9030027
Numpanviwat N, Chuchard P. Transient Pressure-Driven Electroosmotic Flow through Elliptic Cross-Sectional Microchannels with Various Eccentricities. Computation. 2021; 9(3):27. https://doi.org/10.3390/computation9030027
Chicago/Turabian StyleNumpanviwat, Nattakarn, and Pearanat Chuchard. 2021. "Transient Pressure-Driven Electroosmotic Flow through Elliptic Cross-Sectional Microchannels with Various Eccentricities" Computation 9, no. 3: 27. https://doi.org/10.3390/computation9030027
APA StyleNumpanviwat, N., & Chuchard, P. (2021). Transient Pressure-Driven Electroosmotic Flow through Elliptic Cross-Sectional Microchannels with Various Eccentricities. Computation, 9(3), 27. https://doi.org/10.3390/computation9030027