Next Article in Journal
Modified ALNS Algorithm for a Processing Application of Family Tourist Route Planning: A Case Study of Buriram in Thailand
Next Article in Special Issue
Transient Pressure-Driven Electroosmotic Flow through Elliptic Cross-Sectional Microchannels with Various Eccentricities
Previous Article in Journal
Modified Fast Inverse Square Root and Square Root Approximation Algorithms: The Method of Switching Magic Constants
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Improved Stability Criteria on Linear Systems with Distributed Interval Time-Varying Delays and Nonlinear Perturbations

by
Jitsin Piyawatthanachot
1,
Narongsak Yotha
2 and
Kanit Mukdasai
1,*
1
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
2
Department of Applied Mathematics and Statistics, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
*
Author to whom correspondence should be addressed.
Computation 2021, 9(2), 22; https://doi.org/10.3390/computation9020022
Submission received: 31 January 2021 / Revised: 15 February 2021 / Accepted: 18 February 2021 / Published: 21 February 2021

Abstract

:
The problem of delay-range-dependent stability analysis for linear systems with distributed time-varying delays and nonlinear perturbations is studied without using the model transformation and delay-decomposition approach. The less conservative stability criteria are obtained for the systems by constructing a new augmented Lyapunov–Krasovskii functional and various inequalities, which are presented in terms of linear matrix inequalities (LMIs). Four numerical examples are demonstrated for the results given to illustrate the effectiveness and improvement over other methods.

1. Introduction

The system of linear delay differential equations appears naturally in many branches of science and engineering. The delay is very often encountered in various technical systems, such as robotics, electric systems, hydraulic networks, chemical processes, long transmission lines, communication networks, etc. [1]. The stability problem of the investigation of a linear system with delay has been exploited over many years [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]. The stability criteria for time-delay systems are generally divided into two classes: the delay-independent one and the delay-dependent one. Delay-independent stability criteria tend to be more conservative, especially for a small size delay; such criteria do not give any information on the size of the delay. On the other hand, delay-dependent stability criteria are concerned with the size of the delay and usually provide a maximal delay size. The stability criteria of dynamical systems with time-varying delays and nonlinear perturbations have received the attention of many theoreticians and engineers in this field over the last few decades [4,9,14,18,25,28]. For delay-dependent stability criteria, the main concern is to enlarge the feasible region of the criteria to guarantee the asymptotic stability of time-delay systems in a given time-delay interval [2,3,6,7,22,23]. A descriptor model transformation and a corresponding Lyapunov–Krasovskii functional were introduced for the stability analysis of systems with delays in [19,21]. Moreover, delay-range-dependent stability criteria for dynamical systems with interval time-varying delays have been attracting the attention of several researchers [4,9,14,20,25,28]. Delay-range-dependent stability criteria make use of information on the lower and upper bounds of delay. In the past few years, there have been various approaches to reduce the conservatism of delay-dependent conditions by using a new Lyapunov–Krasovskii functional [18,26], improved inequalities [7,11,12,13,16,17,18,27], the free-weighting matrices technique [3,18], the delay-decomposition approach [2], and model transformation [9,28]. However, the results do not take into account the presence of nonlinear perturbations and distributed time-varying delay in the system.
In the existing literature, the linear system with an interval time-varying state delay and nonlinear perturbations has been considered in [25] in the form:
x ˙ ( t ) = A x ( t ) + B x ( t h ( t ) ) + f ( t , x ( t ) ) + g ( t , x ( t h ( t ) ) ) ,
x ( t ) = ϕ ( t ) , t [ h 2 , 0 ]
where h ( t ) is a interval time-varying delay,
0 h 1 h ( t ) h 2 , h ˙ ( t ) u ,
x ( t ) R n , A, B R n × n , h 1 , h 2 and u are positive real constants representing the lower and upper bounds of the delay, and ϕ ( t ) is a given continuously differentiable function on t [ h 2 , 0 ] . The uncertainties f ( t , x ( t ) ) and g ( t , x ( t h ( t ) ) ) represent the nonlinear parameter perturbations with respect to the current state x ( t ) and the delayed state x ( t h ( t ) ) , respectively, and are bounded in magnitude in the form,
f T ( t , x ( t ) ) f ( t , x ( t ) ) η 2 x T ( t ) x ( t ) ,
g T ( t , x ( t h ( t ) ) ) g ( t , x ( t h ( t ) ) ) ρ 2 x T ( t h ( t ) ) x ( t h ( t ) ) ,
where η and ρ are known real positive constants.
More recently, the authors studied the problem of stability analysis for linear systems with distributed time-varying delays in [22] in the form:
x ˙ ( t ) = A x ( t ) + B x ( t h ( t ) ) + C t r ( t ) t x ( s ) d s ,
x ( t ) = ϕ ( t ) , t [ h 2 , 0 ] ,
where h ( t ) is a time-varying delay,
0 h ( t ) h 2 , u h ˙ ( t ) u < 1 ,
x ( t ) R n , A, B, C R n × n , h 2 and u are positive real constants representing the d upper bounds of the delay, and ϕ ( t ) is a given continuously differentiable function on t [ h 2 , 0 ] .
Motivated by the above statement, we consider the system with distributed interval time-varying delays and nonlinear perturbations in the form:
x ˙ ( t ) = A x ( t ) + B x ( t h ( t ) ) + f ( t , x ( t ) ) + g ( t , x ( t h ( t ) ) ) + C t r ( t ) t x ( s ) d s ,
x ( t ) = ϕ ( t ) , t [ max { h 2 , r 2 } , 0 ] ,
where h ( t ) and r ( t ) are interval time-varying delays,
0 h 1 h ( t ) h 2 , u h ˙ ( t ) u < 1 ,
0 r 1 r ( t ) r 2 ,
x ( t ) R n , A, B, C R n × n , h 1 , h 2 , r 1 , r 2 and u are positive real constants, and ϕ ( t ) is a given continuously differentiable function on t [ max { h 2 , r 2 } , 0 ] . The uncertainties f ( t , x ( t ) ) and g ( t , x ( t h ( t ) ) ) represent the nonlinear parameter perturbations with respect to the current state x ( t ) and the delayed state x ( t h ( t ) ) , respectively, and are bounded in magnitude in the form (4) and (5).
In this paper, we consider the problem of stability criteria for a linear system with distributed interval time-varying delays and nonlinear perturbations (9). Based on some new inequalities, some new augmented Lyapunov–Krasovskii functionals, an improved Peng–Park integral inequality, a novel triple integral inequality, and the utilization of the zero equation, less conservative stability criteria are obtained in terms of linear matrix inequalities (LMIs) without using model transformation and the delay-decomposition approach. Numerical examples illustrate the results.

2. Problem Formulation and Preliminaries

Throughout this paper, R and R n represent the set of real numbers and the n-dimensional Euclidean spaces, respectively. M > ( ) 0 means that the symmetric matrix M is positive (semi-positive) definite. M < ( ) 0 denotes that the symmetric matrix M is negative (semi-negative) definite. M T and M 1 denote the transpose and the inverse of M, respectively. The symbol ∗ represents the symmetric block in a symmetric matrix. I is the identity matrix with appropriate dimensions. S n denotes the set of symmetric matrices. S + n denotes the set of symmetric positive definite matrices. C ( [ a 1 , a 2 ] , R n ) denotes the set of continuous functions mapping the interval [ a 1 , a 2 ] to R n . For any square matrix M, we define S y m ( M ) = M + M T .
Lemma 1
(Schur complement [1]). Given constant symmetric matrices X , Y , Z with appropriate dimensions satisfying X = X T , Y = Y T > 0 , then X + Z T Y 1 Z < 0 if and only if:
X Z T Z Y < 0 .
Lemma 2
([2]). For any constant matrix Q R n × n , Q = Q T > 0 , positive real constant k 2 , and a vector-valued function x ˙ : [ k 2 , 0 ] R n such that the following integrals are well-defined, then:
k 2 0 t + s t x ˙ T ( u ) Q x ˙ ( u ) d u d s x ( t ) 1 k 2 t k 2 t x ( s ) d s T 2 Q 2 Q 2 Q x ( t ) 1 k 2 t k 2 t x ( s ) d s .
Lemma 3
(Sun et al. [20]). For any constant matrix Q R n × n , Q = Q T > 0 , positive real constants k 1 , k 2 , and a vector-valued function x ˙ : [ k 2 , 0 ] R n such that the following integrals are well-defined, then:
k 2 t k 2 t x ˙ T ( s ) Q x ˙ ( s ) d s t k 2 t x ˙ ( s ) d s T Q t k 2 t x ˙ ( s ) d s , ( k 2 2 k 1 2 ) 2 k 2 k 1 t + s t x T ( u ) Q x ( u ) d u d s
k 2 k 1 t + s t x ( u ) d u d s T Q k 2 k 1 t + s t x ( u ) d u d s .
Lemma 4
([18]). For any constant matrices Q 1 , Q 2 , Q 3 R n × n , Q 1 0 , Q 3 > 0 , Q 1 Q 2 Q 3 0 , k ( t ) are time-varying delays with 0 k 1 k ( t ) k 2 , k 1 , k 2 R , vector-valued functions x, and x ˙ : [ k 2 , k 1 ] R n such that the following integrals are well-defined, then:
( k 2 k 1 ) t k 2 t k 1 x ( s ) x ˙ ( s ) T Q 1 Q 2 Q 3 x ( s ) x ˙ ( s ) d s x ( t k 1 ) x ( t k ( t ) ) x ( t k 2 ) t k ( t ) t k 1 x ( s ) d s t k 2 t k ( t ) x ( s ) d s T Q 3 Q 3 0 Q 2 T 0 Q 3 Q 3 T Q 3 Q 2 T Q 2 T Q 3 0 Q 2 T Q 1 0 Q 1 × x ( t k 1 ) x ( t k ( t ) ) x ( t k 2 ) t k ( t ) t k 1 x ( s ) d s t k 2 t k ( t ) x ( s ) d s .
Lemma 5
(Peng–Park’s integral inequality [12,13]). For any constant matrices Q , S R n × n , Q 0 , Q S Q 0 , nonnegative real constants k 2 , and a vector-valued function x ˙ : [ k 2 , 0 ] R n such that the concerned integrations are well-defined, then:
k 2 t k 2 t x ˙ T ( s ) Q x ˙ ( s ) d s ω T ( t ) ω ( t ) ,
where ω ( t ) = x T ( t ) x T ( t k ( t ) ) x T ( t k 2 ) T and = Q Q S S 2 Q + S + S T Q S Q .
Lemma 6
([27]). For any constant matrix Q R n × n , Q = Q T > 0 , real constants a , b , and a vector-valued function x ˙ : [ a , b ] R n such that the following integrals are well-defined, then:
a b u b x ˙ T ( s ) Q x ˙ ( s ) d s d u 2 Ω 1 T Q Ω 1 + 4 Ω 2 T Q Ω 2 + 6 Ω 3 T Q Ω 3 ,
where:
Ω 1 = x ( b ) 1 b a a b x ( s ) d s , Ω 2 = x ( b ) + 2 b a a b x ( s ) d s 6 ( b a ) 2 a b u b x ( s ) d s d u , Ω 3 = x ( b ) 3 b a a b x ( s ) d s + 24 ( b a ) 2 a b u b x ( s ) d s d u 60 ( b a ) 3 a b u b s b x ( r ) d r d s d u .
Lemma 7
([16]). For any matrices Θ S + n , M 1 , M 2 R m × n , Υ R 2 n × m , α ( 0 , 1 ) , the inequality:
Υ T 1 α Θ 0 0 1 1 α Θ Υ Υ T Σ ( α ) Υ s y m Υ T ( 1 α ) M 1 T α M 2 T + α M 1 Θ 1 M 1 T + ( 1 α ) M 2 Θ 1 M 2 T ,
holds, where:
Σ ( α ) = ( 2 α ) Θ 0 0 ( 1 + α ) Θ .
Lemma 8
([7]). For a matrix Q S + n , and any continuously differentiable function function x : [ a , b ] R n , the equality:
a b x ˙ T ( s ) Q x ˙ ( s ) d s 1 b a Ω 4 T Q Ω 4 + 3 b a Ω 5 T Q Ω 5 + 5 b a Ω 6 T Q Ω 6 + 7 b a Ω 7 T Q Ω 7 ,
holds, where:
Ω 4 = x ( b ) x ( a ) , Ω 5 = x ( b ) + x ( a ) 2 b a a b x ( s ) d s , Ω 6 = x ( b ) x ( a ) + 6 b a a b x ( s ) d s 12 ( b a ) 2 a b u b x ( s ) d s d u , Ω 7 = x ( b ) + x ( a ) 12 b a a b x ( s ) d s + 60 ( b a ) 2 a b u b x ( s ) d s d u 120 ( b a ) 3 a b u b v b x ( s ) d s d v d u .
Lemma 9
([11]). Suppose Ω , Ω i j ( i , j = 1 , 2 ) are the constant matrices of appropriate dimensions, α [ 0 , 1 ] , β [ u , u ] , 0 u < 1 , then:
Ω + α Ω 11 + ( 1 α ) Ω 12 + β Ω 21 + ( 1 β ) Ω 22 < 0 ,
holds if and only if the following inequalities hold,
Ω + Ω 11 u Ω 21 + ( 1 + u ) Ω 22 < 0 ,
Ω + Ω 12 u Ω 21 + ( 1 + u ) Ω 22 < 0 ,
Ω + Ω 11 + u Ω 21 + ( 1 u ) Ω 22 < 0 ,
Ω + Ω 12 + u Ω 21 + ( 1 u ) Ω 22 < 0 .

3. Main Results

We define a new parameter:
X 1 = P 2 P 3 P 4 , X 2 = P 5 P 6 P 7 , X 3 = P 8 P 9 P 10 , X 4 = P 11 P 12 P 13 , X 5 = Q 1 Q 2 Q 3 , X 6 = Q 4 Q 5 Q 6 , X 7 = R 1 R 2 R 3 , X 8 = R 4 R 5 R 6 , X 9 = R 7 R 8 R 9 , X 10 = R 10 R 11 R 12 , X 11 = Z 2 Z 2 S S 2 Z 2 + S + S T Z 2 S Z 2 , X 12 = R 3 R 3 0 R 2 T 0 R 3 R 3 T R 3 R 2 T R 2 T R 3 0 R 2 T R 1 0 R 1 , X 13 = R 6 R 6 0 R 5 T 0 R 6 R 6 T R 6 R 5 T R 5 T R 6 0 R 5 T R 4 0 R 4 , X 14 = R 9 R 9 0 R 8 T 0 R 9 R 9 T R 9 R 8 T R 8 T R 9 0 R 8 T R 7 0 R 7 , X 15 = R 12 R 12 0 R 11 T 0 R 12 R 12 T R 12 R 11 T R 11 T R 12 0 R 11 T R 10 0 R 10 , X 16 = 2 W 2 2 W 2 2 W 2 , X 17 = 2 W 4 2 W 4 2 W 4 , X 18 = 12 W 1 12 W 1 120 W 1 360 W 1 12 W 1 72 W 1 480 W 1 1080 W 1 120 W 1 480 W 1 3600 W 1 8640 W 1 360 W 1 1080 W 1 8640 W 1 21,600 W 1 , X 19 = 12 W 3 12 W 3 120 W 3 360 W 3 12 W 3 72 W 3 480 W 3 1080 W 3 120 W 3 480 W 3 3600 W 3 8640 W 3 360 W 3 1080 W 3 8640 W 3 21,600 W 3 ,
ϕ ( α , β ) = S y m ( Π 1 T P 1 Π 2 ) + S y m ( Π 3 T X 1 Π 4 ) + S y m ( Π 5 T X 2 Π 6 ) + S y m ( Π 7 T X 3 Π 8 ) + S y m ( Π 9 T X 4 Π 10 ) + Π 11 T X 5 Π 11 ( 1 β ) Π 12 T X 5 Π 12 + Π 13 T X 6 Π 14 + h 2 2 Π 15 T Z 1 Π 15 + h 2 2 Π 15 T Z 2 Π 15 + r 2 2 Π 1 T Z 3 Π 1 + Π 16 T X 11 Π 16 + Π 17 T Z 3 Π 17 + h 2 2 Π 11 T X 7 Π 11 + ( h 2 h 1 ) 2 Π 11 T X 8 Π 11 + r 2 2 Π 11 T X 9 Π 11 + Π 18 T X 12 Π 18 + ( r 2 r 1 ) 2 Π 11 T X 10 Π 11 + Π 19 T X 13 Π 19 + Π 20 T X 14 Π 20 + Π 21 T X 15 Π 21 + h 2 2 2 Π 15 T W 1 Π 15 + h 1 4 2 Π 15 T W 2 Π 15 + r 2 2 2 Π 15 T W 3 Π 15 + r 1 4 2 Π 15 T W 4 Π 15 + h 1 2 Π 22 T X 16 Π 22 + r 1 2 Π 23 T X 17 Π 23 + Π 24 T X 18 Π 24 + Π 25 T X 19 Π 25 + Π 15 T L 1 Π 26 + ϵ 1 η 2 Π 1 T I Π 1 ϵ 2 Π 27 T I Π 27 + ϵ 2 ρ 2 Π 28 T I Π 28 ϵ 2 Π 29 T I Π 29 ,
Π 1 = ε 1 , Π 2 = A ε 1 + B ε 3 + C ε 12 + ε 22 + ε 23 , Π 3 = ε 1 T h 1 ε 28 T T , Π 4 = ε 2 T ε 1 T ε 26 T T , Π 5 = ε 1 T h 2 ε 8 T T , Π 6 = ε 2 T ε 1 T ε 6 T T , Π 7 = ε 1 T r 1 ε 29 T T , Π 8 = ε 2 T ε 1 T ε 27 T T , Π 9 = ε 1 T r 2 ε 9 T T , Π 10 = ε 2 T ε 1 T ε 7 T T , Π 11 = ε 1 T ε 2 T T , Π 12 = ε 3 T ε 4 T T , Π 13 = ε 1 T ε 3 T T , Π 14 = ε 2 T ( 1 β ) ε 4 T T , Π 15 = ε 2 , Π 16 = ε 1 T ε 3 T ε 6 T T , Π 17 = ε 12 , Π 18 = ε 1 T ε 3 T ε 6 T h 2 α ε 10 T h 2 ( 1 α ) ε 11 T T , Π 20 = ε 1 T ε 5 T ε 7 T ε 12 T ε 13 T T , Π 19 = ε 26 T ε 3 T ε 6 T ε 24 T h 2 ( 1 α ) ε 11 T T , Π 21 = ε 27 T ε 5 T ε 7 T ε 25 T ε 13 T T , Π 22 = ε 1 T ε 28 T T , Π 23 = ε 1 T ε 29 T T , Π 24 = ε 1 T ε 8 T ε 15 T ε 19 T T , Π 25 = ε 1 T ε 9 T ε 17 T ε 21 T T , Π 26 = ε 2 + A ε 1 + B ε 3 + C ε 12 + ε 22 + ε 23 , Π 27 = ε 22 , Π 28 = ε 3 , Π 29 = ε 23 , χ 1 = ε 1 ε 3 , χ 2 = ε 1 + ε 3 2 ε 10 , χ 3 = ε 1 ε 3 + 6 ε 10 12 ε 14 , χ 4 = ε 1 + ε 3 12 ε 10 + 60 ε 14 120 ε 18 , χ 5 = ε 3 ε 6 , χ 6 = ε 3 + ε 6 2 ε 11 , χ 7 = ε 3 ε 6 + 6 ε 11 12 ε 16 , χ 8 = ε 3 + ε 6 12 ε 11 + 60 ε 16 120 ε 20 , Υ = χ 1 T χ 2 T χ 3 T χ 4 T χ 5 T χ 6 T χ 7 T χ 8 T T , Θ = d i a g ( Z 1 , 3 Z 1 , 5 Z 1 , 7 Z 1 ) , Σ ( α ) = ( 2 α ) Θ 0 0 ( 1 + α ) Θ , Φ ( α , β ) = ϕ ( α , β ) Υ T Σ ( α ) Υ S y m Υ T ( 1 α ) M 1 T α M 2 T α M 1 + ( 1 α ) M 2 Θ ,
and ε i R n × 29 n is defined as ε i = 0 n × ( i 1 ) n I n 0 n × ( 29 i ) n for i = 1 , 2 , , 29 .
Theorem 1.
For given positive constants h 1 , h 2 , r 1 , r 2 , u , if there exist symmetric positive definite matrices P 1 , Z 1 , Z 2 , Z 3 , R 1 , R 3 , R 4 , R 6 , R 7 , R 9 , R 10 , R 12 , W 1 , W 2 , W 3 , W 4 , X l , l = 1 , 2 , , 10 , any appropriate dimensional matrices M 1 , M 2 , S , P i , Q j , R k , i = 2 , 3 , , 13 , j = 1 , 2 , , 6 , k = 2 , 5 , 8 , 11 , and positive constants η, ρ such that the following LMIs hold:
Φ ( α , β ) < 0 ,
Z 2 S Z 2 > 0 ,
holds for α = { 0 , 1 } , r ˙ ( t ) = β = { u , u } , i.e.,:
Φ ( 0 , u ) < 0 ,
Φ ( 0 , u ) < 0 ,
Φ ( 1 , u ) < 0 ,
Φ ( 1 , u ) < 0 ,
then the system (9) is asymptotically stable.
Proof of Theorem 1.
Consider the system (9) with the following Lyapunov–Krasovskii functional:
V ( t ) = i = 1 7 V i ( t ) ,
where:
V 1 ( t ) = x T ( t ) P 1 x ( t ) , V 2 ( t ) = x ( t ) t h 1 t x ( s ) d s T P 2 P 3 P 4 x ( t ) t h 1 t x ( s ) d s + x ( t ) t h 2 t x ( s ) d s T P 5 P 6 P 7 x ( t ) t h 2 t x ( s ) d s + x ( t ) t r 1 t x ( s ) d s T P 8 P 9 P 10 x ( t ) t r 1 t x ( s ) d s + x ( t ) t r 2 t x ( s ) d s T P 11 P 12 P 13 x ( t ) t r 2 t x ( s ) d s , V 3 ( t ) = t h ( t ) t x ( s ) x ˙ ( s ) T Q 1 Q 2 Q 3 x ( s ) x ˙ ( s ) d s , V 4 ( t ) = x ( t ) x ( t h ( t ) ) T Q 4 Q 5 Q 6 x ( t ) x ( t h ( t ) ) , V 5 ( t ) = h 2 t h 2 t u t x ˙ T ( s ) ( Z 1 + Z 2 ) x ˙ ( s ) d s d u + r 2 t r 2 t u t x T ( s ) Z 3 x ( s ) d s d u ,
V 6 ( t ) = h 2 h 2 0 t + s t x ( θ ) x ˙ ( θ ) T R 1 R 2 R 3 x ( θ ) x ˙ ( θ ) d θ d s + ( h 2 h 1 ) h 2 h 1 t + s t x ( θ ) x ˙ ( θ ) T R 4 R 5 R 6 x ( θ ) x ˙ ( θ ) d θ d s + r 2 r 2 0 t + s t x ( θ ) x ˙ ( θ ) T R 7 R 8 R 9 x ( θ ) x ˙ ( θ ) d θ d s + ( r 2 r 1 ) r 2 r 1 t + s t x ( θ ) x ˙ ( θ ) T R 10 R 11 R 12 x ( θ ) x ˙ ( θ ) d θ d s , V 7 ( t ) = t h 2 t s t θ t x ˙ T ( u ) W 1 x ˙ ( u ) d u d θ d s + h 1 2 h 1 0 s 0 t + θ t x ˙ T ( u ) W 2 x ˙ ( u ) d u d θ d s + t r 2 t s t θ t x ˙ T ( u ) W 3 x ˙ ( u ) d u d θ d s + r 1 2 r 1 0 s 0 t + θ t x ˙ T ( u ) W 4 x ˙ ( u ) d u d θ d s .
The time derivatives of V i ( t ) , i = 1 , 2 , 3 , 4 , along the trajectories of system (9) are given by
V 1 ˙ ( t ) = 2 x T ( t ) P 1 x ˙ ( t ) , = 2 x T ( t ) P 1 [ A x ( t ) + B x ( t h ( t ) ) + f ( t , x ( t ) ) + g ( t , x ( t h ( t ) ) ) + C t r ( t ) t x ( s ) d s ] ,
V 2 ˙ ( t ) = 2 x ( t ) t h 1 t x ( s ) d s T P 2 P 3 P 4 x ˙ ( t ) x ( t ) x ( t h 1 ) + 2 x ( t ) t h 2 t x ( s ) d s T P 5 P 6 P 7 x ˙ ( t ) x ( t ) x ( t h 2 ) + 2 x ( t ) t r 1 t x ( s ) d s T P 8 P 9 P 10 x ˙ ( t ) x ( t ) x ( t r 1 ) + 2 x ( t ) t r 2 t x ( s ) d s T P 11 P 12 P 13 x ˙ ( t ) x ( t ) x ( t r 2 ) ,
V 3 ˙ ( t ) = x ( t ) x ˙ ( t ) T Q 1 Q 2 Q 3 x ( t ) x ˙ ( t ) ( 1 h ˙ ( t ) ) x ( t h ( t ) ) x ˙ ( t h ( t ) ) T Q 1 Q 2 Q 3 x ( t h ( t ) ) x ˙ ( t h ( t ) ) = x ( t ) x ˙ ( t ) T Q 1 Q 2 Q 3 x ( t ) x ˙ ( t ) ( 1 β ) x ( t h ( t ) ) x ˙ ( t h ( t ) ) T Q 1 Q 2 Q 3 x ( t h ( t ) ) x ˙ ( t h ( t ) ) ,
V ˙ 4 ( t ) = 2 x ( t ) x ( t h ( t ) ) T Q 4 Q 5 Q 6 x ˙ ( t ) ( 1 h ˙ ( t ) ) x ˙ ( t h ( t ) ) = 2 x ( t ) x ( t h ( t ) ) T Q 4 Q 5 Q 6 x ˙ ( t ) ( 1 β ) x ˙ ( t h ( t ) ) .
The differential of V 5 ( t ) can be estimated as follows by Lemma 5
V ˙ 5 ( t ) = h 2 2 x ˙ T ( t ) ( Z 1 + Z 2 ) x ˙ ( t ) h 2 t h 2 t x ˙ T ( s ) Z 1 x ˙ ( s ) d s h 2 t h 2 t x ˙ T ( s ) Z 2 x ˙ ( s ) d s + r 2 2 x T ( t ) Z 3 x ( t ) r 2 t r 2 t x T ( s ) Z 3 x ( s ) d s h 2 2 x ˙ T ( t ) ( Z 1 + Z 2 ) x ˙ ( t ) h 2 t h 2 t x ˙ T ( s ) Z 1 x ˙ ( s ) d s + x ( t ) x ( t h ( t ) ) x ( t h 2 ) T Z 2 Z 2 S S 2 Z 2 + S + S T Z 2 S Z 2 x ( t ) x ( t h ( t ) ) x ( t h 2 ) + r 2 2 x T ( t ) Z 3 x ( t ) t r ( t ) t x T ( s ) d s Z 3 t r ( t ) t x ( s ) d s .
The differential of V 6 ( t ) is computed by Lemma 4
V ˙ 6 ( t ) = h 2 2 x ( t ) x ˙ ( t ) T R 1 R 2 R 3 x ( t ) x ˙ ( t ) + ( h 2 h 1 ) 2 x ( t ) x ˙ ( t ) T R 4 R 5 R 6 x ( t ) x ˙ ( t ) + r 2 2 x ( t ) x ˙ ( t ) T R 7 R 8 R 9 x ( t ) x ˙ ( t ) + ( r 2 r 1 ) 2 x ( t ) x ˙ ( t ) T R 10 R 11 R 12 x ( t ) x ˙ ( t ) h 2 h 2 0 x ( t + s ) x ˙ ( t + s ) T R 1 R 2 R 3 x ( t + s ) x ˙ ( t + s ) d s ( h 2 h 1 ) h 2 h 1 x ( t + s ) x ˙ ( t + s ) T R 4 R 5 R 6 x ( t + s ) x ˙ ( t + s ) d s r 2 r 2 0 x ( t + s ) x ˙ ( t + s ) T R 7 R 8 R 9 x ( t + s ) x ˙ ( t + s ) d s ( r 2 r 1 ) r 2 r 1 x ( t + s ) x ˙ ( t + s ) T R 10 R 11 R 12 x ( t + s ) x ˙ ( t + s ) d s h 2 2 x ( t ) x ˙ ( t ) T R 1 R 2 R 3 x ( t ) x ˙ ( t ) + ( h 2 h 1 ) 2 x ( t ) x ˙ ( t ) T R 4 R 5 R 6 x ( t ) x ˙ ( t ) + r 2 2 x ( t ) x ˙ ( t ) T R 7 R 8 R 9 x ( t ) x ˙ ( t ) + ( r 2 r 1 ) 2 x ( t ) x ˙ ( t ) T R 10 R 11 R 12 x ( t ) x ˙ ( t ) + x ( t ) x ( t h ( t ) ) x ( t h 2 ) t h ( t ) t x ( s ) d s t h 2 t h ( t ) x ( s ) d s T R 3 R 3 0 R 2 T 0 R 3 R 3 T R 3 R 2 T R 2 T R 3 0 R 2 T R 1 0 R 1 x ( t ) x ( t h ( t ) ) x ( t h 2 ) t h ( t ) t x ( s ) d s t h 2 t h ( t ) x ( s ) d s + x ( t h 1 ) x ( t h ( t ) ) x ( t h 2 ) t h ( t ) t h 1 x ( s ) d s t h 2 t h ( t ) x ( s ) d s T R 6 R 6 0 R 5 T 0 R 6 R 6 T R 6 R 5 T R 5 T R 6 0 R 5 T R 4 0 R 4 x ( t h 1 ) x ( t h ( t ) ) x ( t h 2 ) t h ( t ) t h 1 x ( s ) d s t h 2 t h ( t ) x ( s ) d s + x ( t ) x ( t r ( t ) ) x ( t r 2 ) t r ( t ) t x ( s ) d s t r 2 t r ( t ) x ( s ) d s T R 9 R 9 0 R 8 T 0 R 9 R 9 T R 9 R 8 T R 8 T R 9 0 R 8 T R 7 0 R 7 x ( t ) x ( t r ( t ) ) x ( t r 2 ) t r ( t ) t x ( s ) d s t r 2 t r ( t ) x ( s ) d s + x ( t r 1 ) x ( t r ( t ) ) x ( t r 2 ) t r ( t ) t r 1 x ( s ) d s t r 2 t r ( t ) x ( s ) d s T R 12 R 12 0 R 11 T 0 R 12 R 12 T R 12 R 11 T R 11 T R 12 0 R 11 T R 10 0 R 10 x ( t r 1 ) x ( t r ( t ) ) x ( t r 2 ) t r ( t ) t r 1 x ( s ) d s t r 2 t r ( t ) x ( s ) d s .
An upper bound of V ˙ 7 ( t ) can be obtained by using Lemmas 2 and 6
V ˙ 7 ( t ) = h 2 2 2 x ˙ T ( t ) W 1 x ˙ ( t ) + h 1 4 2 x ˙ T ( t ) W 2 x ˙ ( t ) + r 2 2 2 x ˙ T ( t ) W 3 x ˙ ( t ) + r 1 4 2 x ˙ T ( t ) W 4 x ˙ ( t ) t h 2 t θ t x ˙ T ( u ) W 1 x ˙ ( u ) d u d θ h 1 2 h 1 0 s 0 x ˙ T ( t + θ ) W 2 x ˙ ( t + θ ) d θ d s + t r 2 t θ t x ˙ T ( u ) W 3 x ˙ ( u ) d u d s r 1 2 r 1 0 s 0 x ˙ T ( t + θ ) W 4 x ˙ ( t + θ ) d θ d s h 2 2 2 x ˙ T ( t ) W 1 x ˙ ( t ) + h 1 4 2 x ˙ T ( t ) W 2 x ˙ ( t ) + r 2 2 2 x ˙ T ( t ) W 3 x ˙ ( t ) + r 1 4 2 x ˙ T ( t ) W 4 x ˙ ( t ) + h 1 2 x ( t ) 1 h 1 t h 1 t x ( s ) d s T 2 W 2 2 W 2 2 W 2 x ( t ) 1 h 1 t h 1 t x ( s ) d s + r 1 2 x ( t ) 1 r 1 t r 1 t x ( s ) d s T 2 W 4 2 W 4 2 W 4 x ( t ) 1 r 1 t r 1 t x ( s ) d s + x ( t ) 1 h 2 t h 2 t x ( s ) d s 1 h 2 2 t h 2 t u t x ( s ) d s d u 1 h 2 3 t h 2 t u t s t x ( θ ) d θ d s d u T 12 W 1 12 W 1 120 W 1 360 W 1 12 W 1 72 W 1 480 W 1 1080 W 1 120 W 1 480 W 1 3600 W 1 8640 W 1 360 W 1 1080 W 1 8640 W 1 21,600 W 1 × x ( t ) 1 h 2 t h 2 t x ( s ) d s 1 h 2 2 t h 2 t u t x ( s ) d s d u 1 h 2 3 t h 2 t u t s t x ( θ ) d θ d s d u + x ( t ) 1 r 2 t r 2 t x ( s ) d s 1 r 2 2 t r 2 t u t x ( s ) d s d u 1 r 2 3 t r 2 t u t s t x ( θ ) d θ d s d u T 12 W 3 12 W 3 120 W 3 360 W 3 12 W 3 72 W 3 480 W 3 1080 W 3 120 W 3 480 W 3 3600 W 3 8640 W 3 360 W 3 1080 W 3 8640 W 3 21,600 W 3 × x ( t ) 1 r 2 t r 2 t x ( s ) d s 1 r 2 2 t r 2 t u t x ( s ) d s d u 1 r 2 3 t r 2 t u t s t x ( θ ) d θ d s d u .
From the utilization of the zero equation, the following equation is true for real matrix L 1 with appropriate dimensions:
2 x ˙ T ( t ) L 1 T x ˙ ( t ) + A x ( t ) + B x ( t h ( t ) ) + f ( t , x ( t ) ) + g ( t , x ( t h ( t ) ) ) + C t r ( t ) t x ( s ) d s = 0 .
From (4) and (5), we obtain, for any positive real constants ϵ 1 and ϵ 2 ,
0 ϵ 1 η 2 x T ( t ) x ( t ) ϵ 1 f T ( t , x ( t ) ) f ( t , x ( t ) ) ,
0 ϵ 2 ρ 2 x T ( t h ( t ) ) x ( t h ( t ) ) ϵ 2 g T ( t , x ( t h ( t ) ) ) g ( t , x ( t h ( t ) ) ) .
According to (33)–(42), we can obtain:
V ˙ ( t ) = ζ T ( t ) [ ϕ ( α , β ) ] ζ ( t ) h 2 t h 2 t x ˙ T ( s ) Z 1 x ˙ ( s ) d s
where:
ζ ( t ) = π 1 T ( t ) π 2 T ( t ) π 3 T ( t ) π 4 T ( t ) π 5 T ( t ) π 6 T ( t ) π 7 T ( t ) π 8 T ( t ) π 9 T ( t ) T , π 1 ( t ) = x T ( t ) x ˙ T ( t ) x T ( t h ( t ) ) x ˙ T ( t h ( t ) ) x T ( t r ( t ) ) x T ( t h 2 ) T , π 2 ( t ) = x T ( t r 2 ) 1 h 2 t h 2 t x T ( s ) d s 1 r 2 t r 2 t x T ( s ) d s 1 h ( t ) t h ( t ) t x T ( s ) d s T , π 3 ( t ) = 1 h 2 h ( t ) t h 2 t h ( t ) x T ( s ) d s t r ( t ) t x T ( s ) d s t r 2 t r ( t ) x T ( s ) d s T , π 4 ( t ) = 1 h 2 ( t ) t h ( t ) t u t x T ( s ) d s d u 1 h 2 2 t h 2 t u t x T ( s ) d s d u T , π 5 ( t ) = 1 ( h 2 h ( t ) ) 2 t h 2 t h ( t ) u t h ( t ) x T ( s ) d s d u 1 r 2 2 t r 2 t u t x T ( s ) d s d u T , π 6 ( t ) = 1 h 3 ( t ) t h ( t ) t u t v t x T ( s ) d s d v d u 1 h 2 3 t h 2 t u t v t x T ( s ) d s d v d u T , π 7 ( t ) = 1 ( h 2 h ( t ) ) 3 t h 2 t h ( t ) u t h ( t ) v t h ( t ) x T ( s ) d s d v d u 1 r 2 3 t r 2 t u t v t x T ( s ) d s d v d u T , π 8 ( t ) = f T ( t , x ( t ) ) g T ( t , x ( t h ( t ) ) ) t h ( t ) t h 1 x T ( s ) d s t r ( t ) t r 1 x T ( s ) d s T , π 9 ( t ) = x T ( t h 1 ) x T ( t r 1 ) 1 h 1 t h 1 t x T ( s ) d s 1 r 1 t r 1 t x T ( s ) d s T .
Let α = h ( t ) h 2 , then 1 α = h 2 h ( t ) h 2 , and applying Lemma 8, we have:
h 2 t h 2 t x ˙ T ( s ) Z 1 x ˙ ( s ) d s = h 2 t h ( t ) t x ˙ T ( s ) Z 1 x ˙ ( s ) d s h 2 t h 2 t h ( t ) x ˙ T ( s ) Z 1 x ˙ ( s ) d s h 2 h ( t ) ζ T ( t ) Π 1 T Z 1 Π 1 + 3 Π 2 T Z 1 Π 2 + 5 Π 3 T Z 1 Π 3 + 7 Π 4 T Z 1 Π 4 ζ ( t ) h 2 h 2 h ( t ) ζ T ( t ) Π 5 T Z 1 Π 5 + 3 Π 6 T Z 1 Π 6 + 5 Π 7 T Z 1 Π 7 + 7 Π 8 T Z 1 Π 8 ζ ( t ) = 1 α ζ T ( t ) Π 1 T Z 1 Π 1 + 3 Π 2 T Z 1 Π 2 + 5 Π 3 T Z 1 Π 3 + 7 Π 4 T Z 1 Π 4 ζ ( t ) 1 1 α ζ T ( t ) Π 5 T Z 1 Π 5 + 3 Π 6 T Z 1 Π 6 + 5 Π 7 T Z 1 Π 7 + 7 Π 8 T Z 1 Π 8 ζ ( t ) = ζ T ( t ) Υ T 1 α Θ 0 0 1 1 α Θ Υ ζ ( t ) .
For any matrices M 1 , M 2 R 29 n × 4 n and applying Lemma 7, we can obtain:
Υ T 1 α Θ 0 0 1 1 α Θ Υ Υ T Σ ( α ) Υ s y m Υ T ( 1 α ) M 1 T α M 2 T + α M 1 Θ 1 M 1 T + ( 1 α ) M 2 Θ 1 M 2 T = Δ ( α ) .
From (43)–(45), we get:
V ˙ ( t ) ζ T ( t ) ( ϕ ( α , β ) + Δ ( α ) ) ζ ( t ) ,
By Lemma 2 [10], if LMIs (27) and (28) are true for α = { 0 , 1 } , β = { u , u } , then ϕ ( α , β ) + Δ ( α ) < 0 holds for all α ( 0 , 1 ) . β [ u , u ] . By Lemma 9, LMIs (27) and (28) hold if and only if LMIs (29)–(32) hold. This completes the proof. □
We now introduce the following notations for later use
Φ ^ ( α , β ) = ϕ ^ ( α , β ) Υ ^ T Σ ( α ) Υ ^ S y m Υ ^ T ( 1 α ) M 1 T α M 2 T α M 1 + ( 1 α ) M 2 Θ ^ ,
ϕ ^ ( α , β ) = S y m ( Π ^ 1 T P 1 Π ^ 2 ) + S y m ( Π ^ 5 T X ^ 2 Π ^ 6 ) + S y m ( Π ^ 9 T X ^ 4 Π ^ 10 ) + Π ^ 11 T X ^ 5 Π ^ 11 ( 1 β ) Π ^ 12 T X ^ 5 Π ^ 12 + Π ^ 13 T X ^ 6 Π ^ 14 + h 2 2 Π ^ 15 T Z 1 Π ^ 15 + h 2 2 Π ^ 15 T Z 2 Π ^ 15 + r 2 2 Π ^ 1 T Z 3 Π ^ 1 + Π ^ 16 T X ^ 11 Π ^ 16 + Π ^ 17 T Z 3 Π ^ 17 + h 2 2 Π ^ 11 T X ^ 7 Π ^ 11 + r 2 2 Π ^ 11 T X ^ 9 Π ^ 11 + Π ^ 18 T X ^ 12 Π ^ 18 + Π ^ 20 T X ^ 14 Π ^ 20 + h 2 2 2 Π ^ 15 T W 1 Π ^ 15 + r 2 2 2 Π ^ 15 T W 3 Π ^ 15 + Π ^ 24 T X ^ 18 Π ^ 24 + Π ^ 25 T X ^ 19 Π ^ 25 + Π ^ 15 T L 1 Π ^ 26 + ϵ 1 η 2 Π ^ 1 T I Π ^ 1 ϵ 2 Π ^ 27 T I Π ^ 27 + ϵ 2 ρ 2 Π ^ 28 T I Π ^ 28 ϵ 2 Π ^ 29 T I Π ^ 29 ,
Π ^ i = Π i , i = 1 , 2 , , 29 , X ^ 1 j = X 1 j , j = 1 , 2 , , 9 , χ ^ k = χ k , k = 1 , 2 , , 8 , Θ ^ = Θ , Υ ^ = Υ , and ε ^ i = ε i , i = 1 , 2 , , 23 .
Corollary 1.
For given positive constants h 2 , r 2 , u , if there exist symmetric positive definite matrices P 1 , Z 1 , Z 2 , Z 3 , R 1 , R 3 , R 7 , R 9 , W 1 , W 3 , X l , l = 2 , 4 , 5 , 6 , 7 , 9 , any appropriate dimensional matrices M 1 , M 2 , R 2 , R 8 , S , P i , Q j , R k , i = 5 , 6 , 7 , 11 , 12 , 13 , j = 1 , 2 , , 6 , and positive constants η, ρ such that the following LMIs hold:
Φ ^ ( α , β ) < 0 ,
Z 2 S Z 2 > 0 ,
holds for α = { 0 , 1 } , r ˙ ( t ) = β = { u , u } , i.e.,
Φ ^ ( 0 , u ) < 0 ,
Φ ^ ( 0 , u ) < 0 ,
Φ ^ ( 1 , u ) < 0 ,
Φ ^ ( 1 , u ) < 0 ,
then the system (9) is asymptotically stable.

4. Numerical Examples

Example 1.
Consider the system (1) with:
A = 1.2 0.1 0.1 1.0 , B = 0.6 0.7 1.0 0.8 , η 0 , ρ 0 .
By using the LMIs Toolbox inMATLAB(with an accuracy of 0.01) for the application of Theorem 1 to System (1) with (52), the maximum upper bounds h 2 for the asymptotic stability of Example 1 are listed in the comparison in Table 1 for different values of h 1 and η. Table 1 shows that the results derived in this research are less conservative than the results in [4,9,14,25,28].
Example 2.
Consider the system (6) with:
A = 0.0 1.0 1.0 2.0 , B = 0.0 0.0 1.0 1.0 .
Table 2 shows some calculation results obtained from the application of Corollary 1 to System (6) with (53). The values in Table 2 are the maximum upper with (53). The values in Table 2 are the maximum upper bounds on the delay h 2 under different values of u than those in [6,7,8,15,22,24,26].
Example 3.
Consider the system (6) with:
A = 2.0 0.0 0.0 0.9 , B = 1.0 0.0 1.0 1.0 .
For different u, Table 3 presents the allowable upper bound of h ( t ) , which guarantees the stability of System (6). Table 3 shows that our method produces a larger upper bound h 2 than those in [5,8,15,16,24,26].
Example 4.
Consider the system (9) with:
A = 0.9 0.2 0.1 0.9 , B = 1.1 0.2 0.1 1.1 , C = 0.2 0 0.2 0.1 , η 0 , ρ 0 .
By using the LMI Toolbox in MATLAB for Theorem 1 to (55), one can obtain the maximum upper bounds of the time-delay h 2 for the asymptotic stability of Example 4, which are listed in Table 4 for different values of u and r 2 .

5. Conclusions

In this paper, we focus on the problem of asymptotic stability criteria for linear systems with distributed interval time-varying delays and nonlinear perturbations without using the model transformation and delay-decomposition approach. Firstly, we obtain the new asymptotic stability criteria for the uncertain linear systems by using a suitable Lyapunov–Krasovskii functional, an improved Peng–Par integral inequality, and a novel triple integral inequality. Finally, we demonstrate numerical examples that are less conservative than other literature examples.

Author Contributions

Conceptualization, J.P.; methodology, J.P. and N.Y.; software, J.P. and N.Y.; validation, J.P., N.Y. and K.M.; formal analysis, K.M.; investigation, J.P. and N.Y.; writing—original draft preparation, J.P. and N.Y.; writing—review and editing, J.P. and K.M.; visualization, N.Y.; supervision, J.P.; project administration, J.P. and K.M.; funding acquisition, K.M. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by the Development and Promotion of Science and Technology Talents Project (DPST) and National Research Council of Thailand (NRCT) and Khon Kaen University (Mid-Career Research Grant NRCT5-RSA63003).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data sharing not applicable.

Acknowledgments

The authors thank the reviewers for their valuable comments and suggestions, which led to the improvement of the content of the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Gu, K.; Kharitonov, V.L.; Chen, J. Stability of Time-Delay Systems; Birkhäuser: Berlin, Germany, 2003. [Google Scholar]
  2. Balasubramaniam, P.; Krishnasamy, R.; Rakkiyappan, R. Delay-dependent stability of neutral systems with time-varying delays using delay-decomposition approach. Appl. Math. Model. 2012, 36, 2253–2261. [Google Scholar] [CrossRef]
  3. He, Y.; Wang, Q.G.; Xie, L.H.; Lin, C. Further improvement of free-weighting matrices technique for systems with time-varying delay. IEEE Trans. Automat. Contr. 2007, 52, 293–299. [Google Scholar] [CrossRef]
  4. Hui, J.J.; Kong, X.Y.; Zhang, H.X.; Zhou, X. Delay-partitioning approach for systems with interval time-varying delay and nonlinear perturbations. J. Comput. Appl. Math. 2015, 281, 74–81. [Google Scholar] [CrossRef]
  5. Kim, J.H. Further improvement of Jensen inequality and application to stability of time-delayed systems. Automatica 2016, 64, 121–125. [Google Scholar] [CrossRef]
  6. Kwon, O.M.; Park, M.J.; Park, J.H.; Lee, S.M.; Cha, E.J. Improved results on stability of linear systems with time-varying delays via Wirtinger-based integral inequality. J. Frankl. Inst. 2014, 351, 5386–5398. [Google Scholar] [CrossRef]
  7. Lee, T.H.; Park, J.H.; Xu, S.Y. Ralaxed conditions for stability of time-varying delay systems. Automatica 2017, 75, 11–15. [Google Scholar] [CrossRef]
  8. Li, Z.C.; Yan, H.C.; Zhang, H.; Zhan, X.S. Improved inequality-based functions approach for stability analysis of time delay system. Automatica 2019, 108, 108416. [Google Scholar] [CrossRef]
  9. Liu, P.L. New results on delay-range-dependent stability analysis for interval time-varying delay systems with non-linear perturbations. ISA Trans. 2015, 57, 93–100. [Google Scholar] [CrossRef]
  10. Liu, K.; Seuret, A.; Xia, Y.Q. Stability analysis of systems with time-varying delays via the second-order Bessel-Legendre inequality. Automatica 2017, 76, 138–142. [Google Scholar] [CrossRef] [Green Version]
  11. Park, P.G.; Lee, W.I.; Lee, S.Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J. Frankl. Inst. 2015, 352, 1378–1396. [Google Scholar] [CrossRef]
  12. Park, P.; Ko, J.W.; Jeong, C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica 2011, 47, 235–238. [Google Scholar] [CrossRef]
  13. Peng, C.; Fei, M.R. An improved result on the stability of uncertain T-S fuzzy systems with interval time-varying delay. Fuzzy Sets Syst. 2013, 212, 97–109. [Google Scholar] [CrossRef]
  14. Ramakrishnan, K.; Ray, G. Delay-range-dependent stability criterion for interval time-delay systems with nonlinear perturbations. Int. J. Autom. Comput. 2011, 8, 141–146. [Google Scholar] [CrossRef]
  15. Seuret, A.; Gouaisbaut, F. Wirtinger-based integral inequality: Application to time-delay systems. Automatica 2013, 49, 2860–2866. [Google Scholar] [CrossRef] [Green Version]
  16. Seuret, A.; Liu, K.; Gouaisbaut, F. Generalized reciprocally convex combination lemmas and its application to time-delay systems. Automatica 2018, 95, 488–493. [Google Scholar] [CrossRef] [Green Version]
  17. Shi, K.B.; Wang, J.; Zhong, S.M.; Tang, Y.Y.; Cheng, J. Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control. Fuzzy Sets Syst. 2020, 394, 40–64. [Google Scholar] [CrossRef]
  18. Singkibud, P.; Mukdasai, K. On robust stability for uncertain neutral systems with non-differentiable interval time-varyingdiscrete delay and nonlinear perturbations. Asian-Eur. J. Math. 2018, 11, 1–29. [Google Scholar] [CrossRef]
  19. Pinjai, S.; Mukdasai, K. New robust exponential stability criterion for uncertain neutral systems with discrete and distributed time-varying delays and nonlinear perturbations. Abstr. Appl. Anal. 2011, 2011, 463603. [Google Scholar] [CrossRef]
  20. Sun, J.; Liu, G.P.; Chen, J.; Rees, D. Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica 2010, 46, 466–470. [Google Scholar] [CrossRef]
  21. Tian, J.; Xiong, L.; Liu, J.; Xie, X. Novel delay-dependent robust stability criteria for uncertain neutral systems with time-varying delay. Chaos Solitons Fractals 2009, 40, 1858–1866. [Google Scholar] [CrossRef]
  22. Tian, J.K.; Liu, Y.M. A new stability criterion for systems with distributed time-varying delays via mixed inequalities method. Complexity 2020, 2020, 7090834. [Google Scholar] [CrossRef] [Green Version]
  23. Wu, M.; He, Y.; She, J.H.; Liu, G.P. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 2004, 40, 1435–1439. [Google Scholar] [CrossRef]
  24. Zeng, H.B.; He, Y.; Mu, M.; She, J. Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Trans. Automat. Control 2015, 60, 2768–2772. [Google Scholar] [CrossRef]
  25. Zhang, W.; Cai, X.S.; Han, Z.Z. Robust stability criteria for systems with interval time-varying delay and nonlinear perturbations. J. Comput. Appl. Math. 2010, 234, 174–180. [Google Scholar] [CrossRef] [Green Version]
  26. Zhang, X.M.; Han, Q.L.; Seuret, A.; Gouaisbaut, F. An improved reciprocally convex inequality and an augmented Lyapunov–Krasovskii functional for stability of linear systems with time-varying delay. Automatica 2017, 84, 221–226. [Google Scholar] [CrossRef] [Green Version]
  27. Zhao, N.; Lin, C.; Chen, B.; Wang, Q.G. A new double integral inequality and application to stability test for time-delay systems. Appl. Math. Lett. 2017, 65, 26–31. [Google Scholar] [CrossRef]
  28. Zhou, X.; Zhang, H.; Hu, X.X.; Hui, J.J.; Li, T.M. Improved results on robust stability for systems with interval time-varying delays and nonlinear perturbations. Math. Probl. Eng. 2014, 2014, 898260. [Google Scholar] [CrossRef]
Table 1. Upper bounds h 2 for different conditions for Example 1 with r 1 = h 1 , r 2 = h 2 .
Table 1. Upper bounds h 2 for different conditions for Example 1 with r 1 = h 1 , r 2 = h 2 .
h 1 Methods u = 0.9 , ρ = 0.1 u = 0.9 , ρ = 0.1
η = 0 η = 0.1
0.5Zhang et al. (2010) [25]1.3381.245
Ramakrishnan and Ray (2011) [14]1.5581.384
Hui et al. (2015) [4]1.8241.524
Zhou et al. (2014) [28]1.85991.6622
Liu (2015) [9]2.17141.9573
Theorem 14.58214.3269
1Zhang et al. (2010) [25]1.5431.408
Ramakrishnan & Ray (2011) [14]1.7601.543
Hui et al. (2015) [4]1.9931.638
Zhou et al. (2014) [28]2.0651.8188
Liu (2015) [9]2.27491.9629
Theorem 14.74184.4751
Table 2. Upper bounds of time-delay h 2 for different conditions for Example 2 with r 1 = h 1 = 0 , r 2 = h 2 , η = 0 , ρ = 0 .
Table 2. Upper bounds of time-delay h 2 for different conditions for Example 2 with r 1 = h 1 = 0 , r 2 = h 2 , η = 0 , ρ = 0 .
Methods u = 0.1 u = 0.2 u = 0.5 u = 0.8
[15]6.5903.6721.4111.275
[6]7.1254.4132.2431.662
[24]7.1484.4662.3521.768
[7]7.1674.5172.4151.838
[26]7.2304.5562.5091.940
[8]7.2974.6252.2642.038
[22]10.0956.8083.6762.615
Corollary 111.0187.6124.3403.289
Table 3. Upper bounds of time-delay h 2 for different conditions for Example 3 with r 1 = h 1 = 0 , r 2 = h 2 , η = 0 , ρ = 0 .
Table 3. Upper bounds of time-delay h 2 for different conditions for Example 3 with r 1 = h 1 = 0 , r 2 = h 2 , η = 0 , ρ = 0 .
Methods u = 0.1 u = 0.2 u = 0.5 u = 0.8
[15]4.7033.8342.4202.137
[5]4.753-2.4292.183
[24]4.7884.0603.0552.615
[16]4.9304.2203.0902.660
[26]4.910-3.2332.789
[8]4.9964.3083.2512.867
[22]5.6504.9133.7933.251
Corollary 16.0145.3714.1053.561
Table 4. Upper bounds of time-delay h 2 for different conditions for Example 4.
Table 4. Upper bounds of time-delay h 2 for different conditions for Example 4.
Theorem 1 h 1 = 0.1 , r 1 = 0.1 , η = 0.1 , ρ = 0.05
r 2 = 5 r 2 = 9
u = 0.1 0.72000.5213
u = 0.5 0.70210.4617
u = 0.9 0.67320.4275
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Piyawatthanachot, J.; Yotha, N.; Mukdasai, K. Improved Stability Criteria on Linear Systems with Distributed Interval Time-Varying Delays and Nonlinear Perturbations. Computation 2021, 9, 22. https://doi.org/10.3390/computation9020022

AMA Style

Piyawatthanachot J, Yotha N, Mukdasai K. Improved Stability Criteria on Linear Systems with Distributed Interval Time-Varying Delays and Nonlinear Perturbations. Computation. 2021; 9(2):22. https://doi.org/10.3390/computation9020022

Chicago/Turabian Style

Piyawatthanachot, Jitsin, Narongsak Yotha, and Kanit Mukdasai. 2021. "Improved Stability Criteria on Linear Systems with Distributed Interval Time-Varying Delays and Nonlinear Perturbations" Computation 9, no. 2: 22. https://doi.org/10.3390/computation9020022

APA Style

Piyawatthanachot, J., Yotha, N., & Mukdasai, K. (2021). Improved Stability Criteria on Linear Systems with Distributed Interval Time-Varying Delays and Nonlinear Perturbations. Computation, 9(2), 22. https://doi.org/10.3390/computation9020022

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop