Improved Stability Criteria on Linear Systems with Distributed Interval Time-Varying Delays and Nonlinear Perturbations
Abstract
:1. Introduction
2. Problem Formulation and Preliminaries
3. Main Results
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, K.; Kharitonov, V.L.; Chen, J. Stability of Time-Delay Systems; Birkhäuser: Berlin, Germany, 2003. [Google Scholar]
- Balasubramaniam, P.; Krishnasamy, R.; Rakkiyappan, R. Delay-dependent stability of neutral systems with time-varying delays using delay-decomposition approach. Appl. Math. Model. 2012, 36, 2253–2261. [Google Scholar] [CrossRef]
- He, Y.; Wang, Q.G.; Xie, L.H.; Lin, C. Further improvement of free-weighting matrices technique for systems with time-varying delay. IEEE Trans. Automat. Contr. 2007, 52, 293–299. [Google Scholar] [CrossRef]
- Hui, J.J.; Kong, X.Y.; Zhang, H.X.; Zhou, X. Delay-partitioning approach for systems with interval time-varying delay and nonlinear perturbations. J. Comput. Appl. Math. 2015, 281, 74–81. [Google Scholar] [CrossRef]
- Kim, J.H. Further improvement of Jensen inequality and application to stability of time-delayed systems. Automatica 2016, 64, 121–125. [Google Scholar] [CrossRef]
- Kwon, O.M.; Park, M.J.; Park, J.H.; Lee, S.M.; Cha, E.J. Improved results on stability of linear systems with time-varying delays via Wirtinger-based integral inequality. J. Frankl. Inst. 2014, 351, 5386–5398. [Google Scholar] [CrossRef]
- Lee, T.H.; Park, J.H.; Xu, S.Y. Ralaxed conditions for stability of time-varying delay systems. Automatica 2017, 75, 11–15. [Google Scholar] [CrossRef]
- Li, Z.C.; Yan, H.C.; Zhang, H.; Zhan, X.S. Improved inequality-based functions approach for stability analysis of time delay system. Automatica 2019, 108, 108416. [Google Scholar] [CrossRef]
- Liu, P.L. New results on delay-range-dependent stability analysis for interval time-varying delay systems with non-linear perturbations. ISA Trans. 2015, 57, 93–100. [Google Scholar] [CrossRef]
- Liu, K.; Seuret, A.; Xia, Y.Q. Stability analysis of systems with time-varying delays via the second-order Bessel-Legendre inequality. Automatica 2017, 76, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Park, P.G.; Lee, W.I.; Lee, S.Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J. Frankl. Inst. 2015, 352, 1378–1396. [Google Scholar] [CrossRef]
- Park, P.; Ko, J.W.; Jeong, C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica 2011, 47, 235–238. [Google Scholar] [CrossRef]
- Peng, C.; Fei, M.R. An improved result on the stability of uncertain T-S fuzzy systems with interval time-varying delay. Fuzzy Sets Syst. 2013, 212, 97–109. [Google Scholar] [CrossRef]
- Ramakrishnan, K.; Ray, G. Delay-range-dependent stability criterion for interval time-delay systems with nonlinear perturbations. Int. J. Autom. Comput. 2011, 8, 141–146. [Google Scholar] [CrossRef]
- Seuret, A.; Gouaisbaut, F. Wirtinger-based integral inequality: Application to time-delay systems. Automatica 2013, 49, 2860–2866. [Google Scholar] [CrossRef] [Green Version]
- Seuret, A.; Liu, K.; Gouaisbaut, F. Generalized reciprocally convex combination lemmas and its application to time-delay systems. Automatica 2018, 95, 488–493. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.B.; Wang, J.; Zhong, S.M.; Tang, Y.Y.; Cheng, J. Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control. Fuzzy Sets Syst. 2020, 394, 40–64. [Google Scholar] [CrossRef]
- Singkibud, P.; Mukdasai, K. On robust stability for uncertain neutral systems with non-differentiable interval time-varyingdiscrete delay and nonlinear perturbations. Asian-Eur. J. Math. 2018, 11, 1–29. [Google Scholar] [CrossRef]
- Pinjai, S.; Mukdasai, K. New robust exponential stability criterion for uncertain neutral systems with discrete and distributed time-varying delays and nonlinear perturbations. Abstr. Appl. Anal. 2011, 2011, 463603. [Google Scholar] [CrossRef]
- Sun, J.; Liu, G.P.; Chen, J.; Rees, D. Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica 2010, 46, 466–470. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, L.; Liu, J.; Xie, X. Novel delay-dependent robust stability criteria for uncertain neutral systems with time-varying delay. Chaos Solitons Fractals 2009, 40, 1858–1866. [Google Scholar] [CrossRef]
- Tian, J.K.; Liu, Y.M. A new stability criterion for systems with distributed time-varying delays via mixed inequalities method. Complexity 2020, 2020, 7090834. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; He, Y.; She, J.H.; Liu, G.P. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 2004, 40, 1435–1439. [Google Scholar] [CrossRef]
- Zeng, H.B.; He, Y.; Mu, M.; She, J. Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Trans. Automat. Control 2015, 60, 2768–2772. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, X.S.; Han, Z.Z. Robust stability criteria for systems with interval time-varying delay and nonlinear perturbations. J. Comput. Appl. Math. 2010, 234, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.M.; Han, Q.L.; Seuret, A.; Gouaisbaut, F. An improved reciprocally convex inequality and an augmented Lyapunov–Krasovskii functional for stability of linear systems with time-varying delay. Automatica 2017, 84, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Lin, C.; Chen, B.; Wang, Q.G. A new double integral inequality and application to stability test for time-delay systems. Appl. Math. Lett. 2017, 65, 26–31. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, H.; Hu, X.X.; Hui, J.J.; Li, T.M. Improved results on robust stability for systems with interval time-varying delays and nonlinear perturbations. Math. Probl. Eng. 2014, 2014, 898260. [Google Scholar] [CrossRef]
Methods | |||
---|---|---|---|
0.5 | Zhang et al. (2010) [25] | 1.338 | 1.245 |
Ramakrishnan and Ray (2011) [14] | 1.558 | 1.384 | |
Hui et al. (2015) [4] | 1.824 | 1.524 | |
Zhou et al. (2014) [28] | 1.8599 | 1.6622 | |
Liu (2015) [9] | 2.1714 | 1.9573 | |
Theorem 1 | 4.5821 | 4.3269 | |
1 | Zhang et al. (2010) [25] | 1.543 | 1.408 |
Ramakrishnan & Ray (2011) [14] | 1.760 | 1.543 | |
Hui et al. (2015) [4] | 1.993 | 1.638 | |
Zhou et al. (2014) [28] | 2.065 | 1.8188 | |
Liu (2015) [9] | 2.2749 | 1.9629 | |
Theorem 1 | 4.7418 | 4.4751 |
Methods | ||||
---|---|---|---|---|
[15] | 6.590 | 3.672 | 1.411 | 1.275 |
[6] | 7.125 | 4.413 | 2.243 | 1.662 |
[24] | 7.148 | 4.466 | 2.352 | 1.768 |
[7] | 7.167 | 4.517 | 2.415 | 1.838 |
[26] | 7.230 | 4.556 | 2.509 | 1.940 |
[8] | 7.297 | 4.625 | 2.264 | 2.038 |
[22] | 10.095 | 6.808 | 3.676 | 2.615 |
Corollary 1 | 11.018 | 7.612 | 4.340 | 3.289 |
Methods | ||||
---|---|---|---|---|
[15] | 4.703 | 3.834 | 2.420 | 2.137 |
[5] | 4.753 | - | 2.429 | 2.183 |
[24] | 4.788 | 4.060 | 3.055 | 2.615 |
[16] | 4.930 | 4.220 | 3.090 | 2.660 |
[26] | 4.910 | - | 3.233 | 2.789 |
[8] | 4.996 | 4.308 | 3.251 | 2.867 |
[22] | 5.650 | 4.913 | 3.793 | 3.251 |
Corollary 1 | 6.014 | 5.371 | 4.105 | 3.561 |
Theorem 1 | , , , | |
---|---|---|
0.7200 | 0.5213 | |
0.7021 | 0.4617 | |
0.6732 | 0.4275 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piyawatthanachot, J.; Yotha, N.; Mukdasai, K. Improved Stability Criteria on Linear Systems with Distributed Interval Time-Varying Delays and Nonlinear Perturbations. Computation 2021, 9, 22. https://doi.org/10.3390/computation9020022
Piyawatthanachot J, Yotha N, Mukdasai K. Improved Stability Criteria on Linear Systems with Distributed Interval Time-Varying Delays and Nonlinear Perturbations. Computation. 2021; 9(2):22. https://doi.org/10.3390/computation9020022
Chicago/Turabian StylePiyawatthanachot, Jitsin, Narongsak Yotha, and Kanit Mukdasai. 2021. "Improved Stability Criteria on Linear Systems with Distributed Interval Time-Varying Delays and Nonlinear Perturbations" Computation 9, no. 2: 22. https://doi.org/10.3390/computation9020022
APA StylePiyawatthanachot, J., Yotha, N., & Mukdasai, K. (2021). Improved Stability Criteria on Linear Systems with Distributed Interval Time-Varying Delays and Nonlinear Perturbations. Computation, 9(2), 22. https://doi.org/10.3390/computation9020022