A Power Dissipation Monitoring Circuit for Intrusion Detection and Botnet Prevention on IoT Devices
Abstract
:1. Introduction
- The first implementation of a low-cost, small-sized integrated system for monitoring external IoT cognitive devices.
- Improved security for IP cameras against DoS, DDoS and similar attacks.
- It imitates the principles of biometrics that allow the expansion of data collected by external IDS (when connected), similar to that of industrial condition monitoring.
- It is agnostic of network rules or virus patterns, offering stronger confrontation with attacks of unknown nature.
- It is the first use of a spike-detection circuit for enhancing the security of an IP camera, in doing so adopting simple power analysis SCA.
2. Materials and Methods
2.1. Concept of a DoS Detection Circuit
2.2. Proposed Setup
2.3. Experiments
- The first attack took place between 08:30 and 09:00.
- The second attack took place between 17:00 and 17:30.
- The third attack took place between 21:45 and 22:15.
- T is the sampling period;
- is the sampling frequency.
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
APTs | Advanced Persistent Threats |
C&C | Command and Control |
DDoS | Distributed Denial of Service |
DoS | Denial of Service |
IDS | Intrusion Detection System |
IoT | Internet-of-Things |
IP | Internet Protocol |
PCB | Printed Circuit Board |
SCA | Side Channel Attack |
SNR | Signal-to-Noise Ratio |
VLSI | Very Large Scale Integration |
VPN | Virtual Private Network |
References
- Premsankar, G.; Di Francesco, M.; Taleb, T. Edge computing for the Internet of Things: A case study. IEEE Internet Things J. 2018, 5, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Desmet, L.; Huygens, C. A study on advanced persistent threats. In Proceedings of the IFIP International Conference on Communications and Multimedia Security, Aveiro, Portugal, 25–26 September 2014; Springer: New York, NY, USA, 2014; pp. 63–72. [Google Scholar]
- Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Invernizzi, L.; Kallitsis, M.; et al. Understanding the mirai botnet. In Proceedings of the 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada, 16–18 August 2017; pp. 1093–1110. [Google Scholar]
- Ospina, J.; Liu, X.; Konstantinou, C.; Dvorkin, Y. On the Feasibility of Load-Changing Attacks in Power Systems during the COVID-19 Pandemic. IEEE Access 2021, 9, 2545–2563. [Google Scholar] [CrossRef]
- Lallie, H.S.; Shepherd, L.A.; Nurse, J.R.; Erola, A.; Epiphaniou, G.; Maple, C.; Bellekens, X. Cyber security in the age of covid-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic. arXiv 2020, arXiv:2006.11929. [Google Scholar]
- Helpnetsecurity. Arbor Networks. 2020. Available online: https://www.helpnetsecurity.com/2016/07/19/ddos-attacks-escalate/ (accessed on 10 May 2020).
- Symantec. Internet Security Threat Report. 2019. Available online: https://docs.broadcom.com/doc/istr-24-2019-en (accessed on 10 November 2020).
- Witten, I.H.; Frank, E. Data mining: Practical machine learning tools and techniques with Java implementations. ACM Sigmod Rec. 2002, 31, 76–77. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009. [Google Scholar]
- Bhattacharyya, D.K.; Kalita, J.K. Network Anomaly Detection: A Machine Learning Perspective; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Aggarwal, C. Outlier Analysis; Springer: New York, NY, USA, 2013. [Google Scholar]
- Denning, D.E. An intrusion-detection model. IEEE Trans. Softw. Eng. 1987, 2, 222–232. [Google Scholar] [CrossRef]
- Hodge, V.; Austin, J. A survey of outlier detection methodologies. Artif. Intell. Rev. 2004, 22, 85–126. [Google Scholar] [CrossRef] [Green Version]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Huang, L.; Nguyen, X.; Garofalakis, M.; Jordan, M.I.; Joseph, A.; Taft, N. In-network PCA and anomaly detection. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007; pp. 617–624. [Google Scholar]
- Shyu, M.L.; Chen, S.C.; Sarinnapakorn, K.; Chang, L. A Novel Anomaly Detection Scheme Based on Principal Component Classifier; Technical Report; Miami Univ. Coral Gables Fl Dept. of Electrical and Computer Engineering: Coral Gables, FL, USA, 2003. [Google Scholar]
- Lu, W.; Ghorbani, A.A. Network anomaly detection based on wavelet analysis. EURASIP J. Adv. Signal Process. 2008, 2009, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Tavallaee, M.; Ghorbani, A.A. Detecting network anomalies using different wavelet basis functions. In Proceedings of the 6th IEEE Annual Communication Networks and Services Research Conference (CNSR 2008), Halifax, NS, Canada, 5–8 May 2008; pp. 149–156. [Google Scholar]
- Ye, N.; Zhang, Y.; Borror, C.M. Robustness of the Markov-chain model for cyber-attack detection. IEEE Trans. Reliab. 2004, 53, 116–123. [Google Scholar] [CrossRef]
- Syarif, I.; Prugel-Bennett, A.; Wills, G. Unsupervised clustering approach for network anomaly detection. In Proceedings of the International Conference on Networked Digital Technologies, Dubai, United Arab Emirates, 24–26 April 2012; Springer: New York, NY, USA, 2012; pp. 135–145. [Google Scholar]
- Kind, A.; Stoecklin, M.P.; Dimitropoulos, X. Histogram-based traffic anomaly detection. IEEE Trans. Netw. Serv. Manag. 2009, 6, 110–121. [Google Scholar] [CrossRef]
- Tellenbach, B.M. Detection, Classification and Visualization of Anomalies Using Generalized Entropy Metrics. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2012. [Google Scholar]
- Iglesias, F.; Zseby, T. Entropy-based characterization of internet background radiation. Entropy 2015, 17, 74–101. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.Y.; Lai, Y.C.; Chen, I.W.; Wang, F.Y.; Tai, W.H. Statistical analysis of false positives and false negatives from real traffic with intrusion detection/prevention systems. IEEE Commun. Mag. 2012, 50, 146–154. [Google Scholar] [CrossRef]
- Bereziński, P.; Jasiul, B.; Szpyrka, M. An entropy-based network anomaly detection method. Entropy 2015, 17, 2367–2408. [Google Scholar] [CrossRef]
- Li, Z.; Das, A.; Zhou, J. Usaid: Unifying signature-based and anomaly-based intrusion detection. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Hanoi, Vietnam, 18–20 May 2015; Springer: New York, NY, USA, 2005; pp. 702–712. [Google Scholar]
- Cheng, T.H.; Lin, Y.D.; Lai, Y.C.; Lin, P.C. Evasion techniques: Sneaking through your intrusion detection/prevention systems. IEEE Commun. Surv. Tutor. 2011, 14, 1011–1020. [Google Scholar] [CrossRef] [Green Version]
- Zarpelão, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A survey of intrusion detection in Internet of Things. J. Netw. Comput. Appl. 2017, 84, 25–37. [Google Scholar] [CrossRef]
- Cao, C.; Guan, L.; Liu, P.; Gao, N.; Lin, J.; Xiang, J. Hey, you, keep away from my device: Remotely implanting a virus expeller to defeat Mirai on IoT devices. arXiv 2017, arXiv:1706.05779. [Google Scholar]
- Letteri, I.; Del Rosso, M.; Caianiello, P.; Cassioli, D. Performance of Botnet Detection by Neural Networks in Software-Defined Networks. In Proceedings of the 2018 Italian Conference on Cyber Security (ITASEC), Milan, Italy, 6 February 2018. [Google Scholar]
- Anthi, E.; Williams, L.; Burnap, P. Pulse: An adaptive intrusion detection for the Internet of Things. In Proceedings of the Living in the Internet of Things: Cybersecurity of the IoT—2018, London, UK, 28–29 March 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Parra, G.D.L.T.; Rad, P.; Choo, K.K.R.; Beebe, N. Detecting Internet of Things attacks using distributed deep learning. J. Netw. Comput. Appl. 2020, 163, 102662. [Google Scholar] [CrossRef]
- Jung, W.; Zhao, H.; Sun, M.; Zhou, G. IoT botnet detection via power consumption modeling. Smart Health 2020, 15, 100103. [Google Scholar] [CrossRef]
- Qadri, J.; Chen, T.M.; Blasco, J. A Review of Significance of Energy-Consumption Anomaly in Malware Detection in Mobile Devices. IJCSA 2016, 1, 210–230. [Google Scholar] [CrossRef]
- Myridakis, D.; Spathoulas, G.; Kakarountas, A. Supply Current Monitoring for Anomaly Detection on IoT Devices. In Proceedings of the 21st Pan-Hellenic Conference on Informatics, Larisa, Greece, 28–30 September 2017; pp. 1–2. [Google Scholar]
- Myridakis, D.; Spathoulas, G.; Kakarountas, A.; Schoinianakisy, D.; Lüken, J. Anomaly detection in IoT devices via monitoring of supply current. In Proceedings of the 2018 IEEE 8th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), Berlin, Germany, 2–5 September 2018; pp. 1–4. [Google Scholar]
- Myridakis, D.; Myridakis, P.; Kakarountas, A. Intrusion Detection and Botnet Prevention Circuit for IoT Devices. In Proceedings of the 2020 5th IEEE South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Corfu, Greece, 25–27 September 2020; pp. 1–4. [Google Scholar]
- Liu, Y.; Wei, L.; Zhou, Z.; Zhang, K.; Xu, W.; Xu, Q. On code execution tracking via power side-channel. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; ACM: New York, NY, USA, 2016; pp. 1019–1031. [Google Scholar]
- Cheng, Y.; Ji, X.; Lu, T.; Xu, W. DeWiCam: Detecting Hidden Wireless Cameras via Smartphones. In Proceedings of the 2018 on Asia Conference on Computer and Communications Security, ASIACCS ’18, Incheon, Korea, 4–8 June 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–13. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myridakis, D.; Myridakis, P.; Kakarountas, A. A Power Dissipation Monitoring Circuit for Intrusion Detection and Botnet Prevention on IoT Devices. Computation 2021, 9, 19. https://doi.org/10.3390/computation9020019
Myridakis D, Myridakis P, Kakarountas A. A Power Dissipation Monitoring Circuit for Intrusion Detection and Botnet Prevention on IoT Devices. Computation. 2021; 9(2):19. https://doi.org/10.3390/computation9020019
Chicago/Turabian StyleMyridakis, Dimitrios, Paul Myridakis, and Athanasios Kakarountas. 2021. "A Power Dissipation Monitoring Circuit for Intrusion Detection and Botnet Prevention on IoT Devices" Computation 9, no. 2: 19. https://doi.org/10.3390/computation9020019
APA StyleMyridakis, D., Myridakis, P., & Kakarountas, A. (2021). A Power Dissipation Monitoring Circuit for Intrusion Detection and Botnet Prevention on IoT Devices. Computation, 9(2), 19. https://doi.org/10.3390/computation9020019