Studying a Tumor Growth Partial Differential Equation via the Black–Scholes Equation
Abstract
:1. Introduction
2. Preliminaries of Lie Symmetry Analysis
3. Derivation of an Equivalence Transformation Relating Equations (1) and (2)
4. Recovering Invariant Solutions of Equation (2) from Those of Equation (1)
4.1. Solution from
4.2. Solution from
4.3. Solution from
4.4. Solution from
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burgess, P.K.; Kulesa, P.M.; Murray, J.D.; Alvord, E.C., Jr. The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J. Neuropathol. Exp. Neurol. 1997, 56, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Wein, L.; Koplow, D. Mathematical Modeling of Brain Cancer to Identify Promising Combination Treatments; Sloan School of Management, MIT: Cambridge, MA, USA, 1999. [Google Scholar]
- Wein, L.M.; Wu, J.T.; Ianculescu, A.G.; Puri, R.K. A mathematical model of the impact of infused targeted cytotoxic agents on brain tumors: Implications for detection, design and delivery. Cell Prolif. 2002, 35, 343–361. [Google Scholar] [CrossRef] [PubMed]
- Moyo, S.; Leach, P.G.L. Symmetry methods applied to a mathematical model of a tumor of the brain. Proc. Inst. Math. NAS Ukraine 2004, 50, 204–210. [Google Scholar]
- Murray, J.D. Glioblastoma brain tumors: Estimating the time from brain tumor initiation and resolution of a patient survival anomaly after similar treatment protocols. J. Biol. Dyn. 2012, 6, 118–127. [Google Scholar] [CrossRef] [PubMed]
- González-Gaxiola, O.; Bernal-Jaquez, R. Applying Adomian Decomposition Method to Solve Burgess Equation with a Non-linear Source. Int. J. Appl. Comput. Math. 2017, 3, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Political Econ. 1973, 81, 637–659. [Google Scholar] [CrossRef] [Green Version]
- Wilmott, P.; Dewynne, J.N.; Howison, S. Option Pricing: Mathematical Models and Computation; Oxford Financial Press: Cary, NC, USA, 1998. [Google Scholar]
- Večeř, J. A new PDE approach for pricing arithmetic average Asian Options. J. Comput. Financ. 2001, 4, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Ibragimov, N.H. (Ed.) CRC Handbook of Lie Group Analysis of Differential Equations; CRC Press: Boca Raton, FL, USA, 1994; Volume 1. [Google Scholar]
- Ibragimov, N.H. (Ed.) CRC Handbook of Lie Group Analysis of Differential Equations; CRC Press: Boca Raton, FL, USA, 1995; Volume 2. [Google Scholar]
- Ibragimov, N.H. (Ed.) CRC Handbook of Lie Group Analysis of Differential Equations; CRC Press: Boca Raton, FL, USA, 1996; Volume 3. [Google Scholar]
- Cantwell, B.J. Introduction to Symmetry Analysis; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Hydon, P.E. Symmetry Methods for Differential Equations: A Beginner’s Guide; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Baumann, G. Symmetry Analysis of Differential Equations with Mathematica; Springer: New York, NY, USA, 2000. [Google Scholar]
- Bluman, G.W. On mapping linear partial differential equations to constant coefficient equations. SIAM J. Appl. Math. 1983, 43, 1259–1273. [Google Scholar] [CrossRef]
- Anco, S.; Bluman, G.; Wolf, T. Invertible Mappings of Nonlinear PDEs to Linear PDEs Through Admitted Conservation Laws. Acta Appl. Math. 2008, 101, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Kumei, S.; Bluman, G.W. When nonlinear differential equations are equivalent to linear differential equations. SIAM J. Appl. Math. 1982, 42, 1157–1173. [Google Scholar] [CrossRef] [Green Version]
- Bluman, G.W.; Kumei, S. Symmetry based algorithms to relate partial differential equations: I. Local symmetries. Eur. J. Appl. Math. 1990, 1, 189–216. [Google Scholar] [CrossRef] [Green Version]
- Bluman, G.W.; Kumei, S. Symmetry based algorithms to relate partial differential equations: II. Linearization by nonlocal symmetries. Eur. J. Appl. Math. 1990, 1, 217–223. [Google Scholar] [CrossRef]
- Mahomed, F. Complete Invariant Characterization of Scalar Linear (1+1) Parabolic Equations. J. Nonlinear Math. Phys. 2008, 15, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Andriopoulos, K.; Leach, P.G.L. A common theme in applied mathematics: An equation connecting applications in economics. medicine and physics. S. Afr. J. Sci. 2006, 102, 66–72. [Google Scholar]
- Dimas, S.; Andriopoulos, K.; Tsoubelis, D.; Leach, P.G.L. Complete specification of some partial differential equations that arise in financial mathematics. J. Nonlinear Math. Phys. 2009, 16, 73–92. [Google Scholar] [CrossRef]
- Head, A.K. LIE, a PC program for Lie analysis of differential equations. Comput. Phys. Commun. 1996, 96, 311–313. [Google Scholar] [CrossRef]
- Naicker, V.; Andriopoulos, K.; Leach, P.G.L. Symmetry reductions of a Hamilton-Jacobi-Bellman equation arising in financial mathematics. J. Nonlinear Math. Phys. 2005, 12, 268–283. [Google Scholar] [CrossRef]
- Tamizhmani, K.M.; Krishnakumar, K.; Leach, P.G.L. Algebraic resolution of equations of the Black–Scholes type with arbitrary time-dependent parameters. Appl. Math. Comput. 2014, 247, 115–124. [Google Scholar] [CrossRef]
- Wolfram Research, Inc. Mathematica, Version 8.0; Wolfram Research, Inc.: Champaign, IL, USA, 2010. [Google Scholar]
- Gazizov, R.K.; Ibragimov, N.H. Lie symmetry analysis of differential equations in finance. Nonlinear Dyn. 1998, 17, 387–407. [Google Scholar] [CrossRef]
- Sinkala, W. Two ways to solve, using Lie group analysis, the fundamental valuation equation in the double-square-root model of the term structure. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 56–62. [Google Scholar] [CrossRef]
0 | 0 | 0 | ||||
0 | 0 | 0 | ||||
0 | 0 | |||||
0 | 0 | 0 | ||||
0 | 0 | 0 | ||||
0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | ||||
0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | ||||
0 | 0 | |||||
0 | 0 | 0 | ||||
0 | 0 | 0 |
0 | 0 | |||||
0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | |||
0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinkala, W.; Nkalashe, T.F. Studying a Tumor Growth Partial Differential Equation via the Black–Scholes Equation. Computation 2020, 8, 57. https://doi.org/10.3390/computation8020057
Sinkala W, Nkalashe TF. Studying a Tumor Growth Partial Differential Equation via the Black–Scholes Equation. Computation. 2020; 8(2):57. https://doi.org/10.3390/computation8020057
Chicago/Turabian StyleSinkala, Winter, and Tembinkosi F. Nkalashe. 2020. "Studying a Tumor Growth Partial Differential Equation via the Black–Scholes Equation" Computation 8, no. 2: 57. https://doi.org/10.3390/computation8020057
APA StyleSinkala, W., & Nkalashe, T. F. (2020). Studying a Tumor Growth Partial Differential Equation via the Black–Scholes Equation. Computation, 8(2), 57. https://doi.org/10.3390/computation8020057