Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Membrane Preparation
2.2. Gas permeation Tests
2.2.1. Data Analysis by the Tangent Method for Both Instruments
2.2.2. Fitting Method for a Constant Volume/Pressure Increase Instrument
2.2.3. Fitting Method for a Variable Volume/Constant Pressure Instrument
3. Results and Discussion
3.1. Single Gas Transport
3.2. Mixed Gas Transport
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Tangent Method | Fitting Method | Difference % (Fitting-Tangent) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gas | pFeed | P | Θ | D | S | P | Θ | D | S | P | Θ | D | S |
O2 | 1200 | 3.10 | 888 | 4.22 | 0.551 | 3.09 | 861 | 4.36 | 0.53 | −0.48 | −3.10 | 3.20 | −3.57 |
1000 | 3.11 | 893 | 4.20 | 0.554 | 3.10 | 878 | 4.27 | 0.54 | −0.31 | −1.62 | 1.65 | −1.93 | |
850 | 3.11 | 892 | 4.20 | 0.555 | 3.10 | 878 | 4.27 | 0.54 | −0.28 | −1.62 | 1.65 | −1.90 | |
680 | 3.12 | 893 | 4.20 | 0.557 | 3.11 | 875 | 4.29 | 0.54 | −0.35 | −2.01 | 2.06 | −2.35 | |
520 | 3.14 | 900 | 4.17 | 0.565 | 3.12 | 871 | 4.31 | 0.54 | −0.40 | −3.20 | 3.31 | −3.59 | |
350 | 3.17 | 881 | 4.25 | 0.558 | 3.15 | 855 | 4.39 | 0.54 | −0.40 | −3.00 | 3.09 | −3.39 | |
180 | 3.24 | 851 | 4.41 | 0.552 | 3.23 | 822 | 4.56 | 0.53 | −0.34 | −3.42 | 3.55 | −3.75 | |
100 | 3.36 | 838 | 4.47 | 0.563 | 3.52 | 788 | 4.76 | 0.55 | 4.61 | −5.96 | 6.34 | −1.63 | |
N2 | 1200 | 1.16 | 1514 | 2.48 | 0.351 | 1.15 | 1449 | 2.59 | 0.33 | −0.51 | −4.27 | 4.46 | −4.75 |
1000 | 1.15 | 1533 | 2.45 | 0.353 | 1.15 | 1496 | 2.51 | 0.34 | −0.34 | −2.46 | 2.52 | −2.79 | |
850 | 1.16 | 1542 | 2.43 | 0.356 | 1.15 | 1494 | 2.51 | 0.34 | −0.39 | −3.10 | 3.20 | −3.48 | |
680 | 1.16 | 1549 | 2.42 | 0.359 | 1.15 | 1487 | 2.52 | 0.34 | −0.43 | −4.06 | 4.23 | −4.47 | |
520 | 1.17 | 1556 | 2.41 | 0.365 | 1.17 | 1483 | 2.53 | 0.35 | −0.53 | −4.67 | 4.90 | −5.18 | |
350 | 1.20 | 1554 | 2.41 | 0.372 | 1.19 | 1454 | 2.58 | 0.35 | −0.67 | −6.45 | 6.90 | −7.08 | |
180 | 1.29 | 1554 | 2.41 | 0.400 | 1.27 | 1364 | 2.75 | 0.35 | −1.05 | −12.3 | 14.0 | −13.2 | |
100 | 1.48 | 1258 | 2.98 | 0.373 | 1.45 | 1072 | 3.50 | 0.31 | −2.34 | −14.8 | 17.3 | −16.8 | |
CH4 | 1200 | 3.79 | 1924 | 1.95 | 1.46 | 3.71 | 1654 | 2.27 | 1.23 | −2.11 | −14.0 | 16.3 | −15.8 |
1000 | 3.80 | 1972 | 1.90 | 1.50 | 3.72 | 1698 | 2.21 | 1.26 | −2.18 | −13.9 | 16.1 | −15.8 | |
850 | 3.80 | 1998 | 1.88 | 1.52 | 3.75 | 1796 | 2.09 | 1.35 | −1.36 | −10.1 | 11.3 | −11.3 | |
680 | 3.81 | 2054 | 1.83 | 1.57 | 3.72 | 1737 | 2.16 | 1.29 | −2.58 | −15.5 | 18.3 | −17.6 | |
520 | 3.83 | 2088 | 1.80 | 1.60 | 3.77 | 1857 | 2.02 | 1.40 | −1.5 | −11.1 | 12.5 | −12.4 | |
350 | 3.88 | 2219 | 1.69 | 1.72 | 3.75 | 1793 | 2.09 | 1.35 | −3.36 | −19.2 | 23.8 | −21.9 | |
180 | 4.04 | 2352 | 1.59 | 1.90 | 3.88 | 1869 | 2.01 | 1.45 | −3.84 | −20.5 | 25.8 | −23.6 | |
100 | 4.20 | 2366 | 1.59 | 1.99 | 4.12 | 2064 | 1.82 | 1.70 | −1.94 | −12.8 | 14.6 | −14.5 | |
H2 | 1200 | 7.73 | 56.8 | 66.0 | 0.088 | 7.71 | 53.9 | 69.6 | 0.083 | −0.24 | −5.06 | 5.33 | −5.28 |
1000 | 7.73 | 58.6 | 63.9 | 0.091 | 7.72 | 58.1 | 64.5 | 0.09 | −0.09 | −0.91 | 0.92 | −1.00 | |
850 | 7.75 | 59.7 | 62.8 | 0.093 | 7.74 | 58.8 | 63.8 | 0.091 | −0.18 | −1.52 | 1.55 | −1.70 | |
680 | 7.76 | 61.1 | 61.3 | 0.095 | 7.75 | 59.4 | 63.1 | 0.092 | −0.18 | −2.82 | 2.9 | −2.99 | |
520 | 7.77 | 60.7 | 61.8 | 0.094 | 7.72 | 58.1 | 64.5 | 0.09 | −0.60 | −4.25 | 4.44 | −4.83 | |
350 | 7.80 | 60.5 | 61.9 | 0.094 | 7.75 | 57.1 | 65.7 | 0.089 | −0.63 | −5.67 | 6.01 | −6.26 | |
180 | 7.87 | 61.8 | 60.7 | 0.097 | 7.83 | 57.5 | 65.2 | 0.09 | −0.50 | −6.91 | 7.42 | −7.38 | |
100 | 8.30 | 57.3 | 65.5 | 0.095 | 8.27 | 51.5 | 72.9 | 0.085 | −0.40 | −10.2 | 11.3 | −10.5 | |
He | 1200 | 5.27 | 18.7 | 200 | 0.020 | 5.21 | 18.6 | 201 | 0.019 | −1.19 | −0.46 | 0.46 | −1.64 |
1000 | 5.29 | 18.9 | 198 | 0.020 | 5.22 | 18.8 | 200 | 0.02 | −1.42 | −0.83 | 0.83 | −2.24 | |
850 | 5.27 | 18.6 | 202 | 0.020 | 5.26 | 19.3 | 195 | 0.02 | −0.14 | 3.64 | −3.52 | 3.50 | |
680 | 5.11 | 19.7 | 190 | 0.020 | 5.14 | 20.3 | 185 | 0.021 | 0.56 | 2.81 | −2.73 | 3.39 | |
520 | 5.18 | 17.5 | 214 | 0.018 | 5.34 | 19.8 | 190 | 0.021 | 2.98 | 12. 7 | −11.2 | 16.0 | |
350 | 5.57 | 19.7 | 190 | 0.022 | 5.46 | 18.3 | 205 | 0.02 | −2.05 | −7.03 | 7.56 | −8.94 | |
180 | 5.49 | 19.7 | 191 | 0.022 | 5.63 | 18.7 | 200 | 0.021 | 2.61 | −4.87 | 5.11 | −2.38 | |
100 | 6.33 | 19.0 | 197 | 0.024 | 6.17 | 20.0 | 188 | 0.025 | −2.56 | 4.94 | −4.71 | 2.26 | |
CO2 | 1200 | 65.8 | 784 | 4.78 | 10.3 | 66.0 | 801 | 4.68 | 10.6 | 0.38 | 2.22 | −2.18 | 2.61 |
1000 | 65.3 | 838 | 4.48 | 10.9 | 65.5 | 870 | 4.31 | 11.4 | 0.27 | 3.88 | −3.74 | 4.16 | |
850 | 65.3 | 891 | 4.21 | 11.6 | 65.4 | 917 | 4.09 | 12.0 | 0.13 | 2.93 | −2.85 | 3.07 | |
680 | 65.1 | 944 | 3.97 | 12.3 | 65.2 | 973 | 3.85 | 12.7 | 0.22 | 3.16 | −3.06 | 3.39 | |
520 | 65.1 | 1023 | 3.66 | 13.3 | 65.2 | 1048 | 3.58 | 13.7 | 0.13 | 2.45 | −2.39 | 2.58 | |
350 | 65.1 | 1123 | 3.34 | 14.6 | 64.7 | 1142 | 3.28 | 14.8 | −0.49 | 1.65 | −1.63 | 1.15 | |
180 | 64.8 | 1308 | 2.87 | 16.9 | 64.5 | 1325 | 2.83 | 17.1 | −0.41 | 1.32 | −1.31 | 0.91 | |
100 | 64.6 | 1513 | 2.48 | 19.5 | 64.0 | 1515 | 2.48 | 19.4 | −0.83 | 0.10 | −0.10 | −0.73 | |
C2H6 | 1000 | 9.15 | 154 | 24.4 | 0.28 | 9.07 | 142 | 26.3 | 0.26 | −0.87 | −7.79 | 7.79 | −7.14 |
Appendix B
References
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science (80-) 2017, 356, eaab0530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sholl, D.S.; Lively, R.P. Seven chemical separations to change the world. Nature 2016, 532, 435–437. [Google Scholar] [CrossRef]
- Galizia, M.; Chi, W.S.; Smith, Z.P.; Merkel, T.C.; Baker, R.W.; Freeman, B.D. 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules 2017, 50, 7809–7843. [Google Scholar] [CrossRef]
- Esposito, E.; Dellamuzia, L.; Moretti, U.; Fuoco, A.; Giorno, L.; Jansen, J.C. Simultaneous production of biomethane and food grade CO2 from biogas: An industrial case study. Energy Environ. Sci. 2019, 12, 281–289. [Google Scholar] [CrossRef]
- Comesaña-Gándara, B.; Chen, J.; Bezzu, C.G.; Carta, M.; Rose, I.; Ferrari, M.C.; Esposito, E.; Fuoco, A.; Jansen, J.C.; McKeown, N.B. Redefining the Robeson upper bounds for CO2 /CH4 and CO2 /N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 2019, 12, 2733–2740. [Google Scholar] [CrossRef] [Green Version]
- Robeson, L.M. The upper bound revisited. J. Memb. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Memb. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Goh, K.; Yang, Y.; Gong, H.; Li, W.; Enis Karahan, H.D.; Guiver, M.; Wang, R.; Bae, T.H. Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chem. Rev. 2018, 118, 8655–8769. [Google Scholar] [CrossRef]
- Sabetghadam, A.; Seoane, B.; Keskin, D.; Duim, N.; Rodenas, T.; Shahid, S.; Sorribas, S.; Le Guillouzer, C.; Clet, G.; Tellez, C.; et al. Metal Organic Framework Crystals in Mixed-Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance. Adv. Funct. Mater. 2016, 26, 3154–3163. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Bavykina, A.V.; Chu, L.; Shan, M.; Sabetghadam, A.; Miro, H.; Kapteijn, F.; Gascon, J. Molecular-Scale Hybrid Membranes Derived from Metal-Organic Polyhedra for Gas Separation. ACS Appl. Mater. Interfaces 2018, 10, 21381–21389. [Google Scholar] [CrossRef]
- Ghalei, B.; Sakurai, K.; Kinoshita, Y.; Wakimoto, K.; Isfahani, A.P.; Song, Q.; Doitomi, K.; Furukawa, S.; Hirao, H.; Kusuda, H.; et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat. Energy 2017, 2, 17086. [Google Scholar] [CrossRef]
- Nagaraju, D.; Bhagat, D.G.; Banerjee, R.; Kharul, U.K. In Situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation. J. Mater. Chem. A 2013, 1, 8828–8835. [Google Scholar] [CrossRef]
- Fuoco, A.; Khdhayyer, R.M.; Attfield, P.M.; Esposito, E.; Jansen, C.J.; Budd, M.P. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation. Membranes 2017, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, R.; Koros, W.J. Mixed matrix membrane materials with glassy polymers. Part 1. Polym. Eng. Sci. 2002, 42, 1420–1431. [Google Scholar] [CrossRef]
- Petropoulos, J.H. A comparative study of approaches applied to the permeability of binary composite polymeric materials. J. Polym. Sci. Polym. Phys. Ed. 1985, 23, 1309–1324. [Google Scholar] [CrossRef]
- Zimmerman, C.M.; Singh, A.; Koros, W.J. Tailoring mixed matrix composite membranes for gas separations. J. Memb. Sci. 1997, 137, 145–154. [Google Scholar] [CrossRef]
- Shimekit, B.; Mukhtar, H.; Murugesan, T. Prediction of the relative permeability of gases in mixed matrix membranes. J. Memb. Sci. 2011, 373, 152–159. [Google Scholar] [CrossRef]
- Vinh-Thang, H.; Kaliaguine, S. Predictive models for mixed-matrix membrane performance: A review. Chem. Rev. 2013, 113, 4980–5028. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Cambridge University Press: Cambridge, UK, 2010; ISBN 9780511709333. [Google Scholar]
- Wijmans, J.G.; Baker, R.W. The solution-diffusion model: A review. J. Memb. Sci. 1995, 107, 1–21. [Google Scholar] [CrossRef]
- Wijmans, J.G.; Baker, R.W. The Solution-Diffusion Model: A Unified Approach to Membrane Permeation. In Materials Science of Membranes for Gas and Vapor Separation; Yampolskii, Y., Pinnau, I., Freeman, B., Eds.; John Wiley& Sons, Ltd.: Chichester, UK, 2006; pp. 159–189. [Google Scholar]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975; ISBN 0198533446. [Google Scholar]
- Daynes, H.A. The Process of Diffusion through a Rubber Membrane. Proc. R. Soc. A Math. Phys. Eng. Sci. 1920, 97, 286–307. [Google Scholar] [CrossRef]
- Amarantos, S.G.; Tsimillis, K.; Savvakis, C.; Petropoulos, J.H. Kinetic analysis of transient permeation curves. J. Memb. Sci. 1983, 13, 259–272. [Google Scholar] [CrossRef]
- Tsimillis, K.; Petropoulos, J.H. Experimental study of a simple anomalous diffusion system by time-lag and transient-state kinetic analysis. J. Phys. Chem. 1977, 81, 2185–2191. [Google Scholar] [CrossRef]
- Strzelewicz, A.; Grzywna, Z.J. On the permeation time lag for different transport equations by Frisch method. J. Memb. Sci. 2008, 322, 460–465. [Google Scholar] [CrossRef]
- Frisch, H.L. Anomalous Polymer-Penetrant Permeation. J. Chem. Phys. 1962, 37, 2408–2413. [Google Scholar] [CrossRef]
- Follain, N.; Valleton, J.M.; Lebrun, L.; Alexandre, B.; Schaetzel, P.; Metayer, M.; Marais, S. Simulation of kinetic curves in mass transfer phenomena for a concentration-dependent diffusion coefficient in polymer membranes. J. Memb. Sci. 2010, 349, 195–207. [Google Scholar] [CrossRef]
- Favre, E.; Morliere, N.; Roizard, D. Experimental evidence and implications of an imperfect upstream pressure step for the time-lag technique. J. Memb. Sci. 2002, 207, 59–72. [Google Scholar] [CrossRef]
- Beckman, I.N.; Shalygin, M.G.; Teplyakov, V.V. Particularities of Membrane Gas Separation Under Unsteady State Conditions. In Mass Transfer in Chemical Engineering Processes; Markoš, J., Ed.; InTech: Rijeka, Croatia, 2011; pp. 205–232. ISBN 978-953-307-619-5. [Google Scholar]
- Beckman, I.N.; Syrtsova, D.A.; Shalygin, M.G.; Kandasamy, P.; Teplyakov, V.V. Transmembrane gas transfer: Mathematics of diffusion and experimental practice. J. Memb. Sci. 2020, 601, 117737. [Google Scholar] [CrossRef]
- Shalygin, M.G.; Kozlova, A.A.; Syrtsova, D.A.; Markova, S.Y.; Ryabova, O.R.; Teplyakov, V.V. Diffusion Transport of Water and Methanol Vapors in Polyvinyltrimethylsilane. Membr. Membr. Technol. 2019, 1, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, H.; Rosengren, K. Isobaric measurement of gas permeability of polymers. J. Appl. Polym. Sci. 1970, 14, 2839–2877. [Google Scholar] [CrossRef]
- Fraga, S.C.; Monteleone, M.; Lanč, M.; Esposito, E.; Fuoco, A.; Giorno, L.; Pilnáček, K.; Friess, K.; Carta, M.; McKeown, N.B.; et al. A novel time lag method for the analysis of mixed gas diffusion in polymeric membranes by on-line mass spectrometry: Method development and validation. J. Memb. Sci. 2018, 561, 39–58. [Google Scholar] [CrossRef]
- Mon, M.; Ferrando-Soria, J.; Verdaguer, M.; Train, C.; Paillard, C.; Dkhil, B.; Versace, C.; Bruno, R.; Armentano, D.; Pardo, E. Postsynthetic Approach for the Rational Design of Chiral Ferroelectric Metal–Organic Frameworks. J. Am. Chem. Soc. 2017, 139, 8098–8101. [Google Scholar] [CrossRef] [PubMed]
- Mon, M.; Bruno, R.; Tiburcio, E.; Grau-Atienza, A.; Sepúlveda-Escribano, A.; Ramos-Fernandez, E.V.; Fuoco, A.; Esposito, E.; Monteleone, M.; Jansen, J.C.; et al. Efficient Gas Separation and Transport Mechanism in Rare Hemilabile Metal–Organic Framework. Chem. Mater. 2019, 31, 5856–5866. [Google Scholar] [CrossRef]
- Monteleone, M.; Esposito, E.; Fuoco, A.; Lanč, M.; Pilnáček, K.; Friess, K.; Bezzu, C.; Carta, M.; McKeown, N.; Jansen, J.C. A Novel Time Lag Method for the Analysis of Mixed Gas Diffusion in Polymeric Membranes by On-Line Mass Spectrometry: Pressure Dependence of Transport Parameters. Membranes (Basel) 2018, 8, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, J.C.; Friess, K.; Drioli, E. Organic vapour transport in glassy perfluoropolymer membranes: A simple semi-quantitative approach to analyze clustering phenomena by time lag measurements. J. Memb. Sci. 2011, 367, 141–151. [Google Scholar] [CrossRef]
- Teplyakov, V.; Meares, P. Correlation aspects of the selective gas permeabilities of polymeric materials and membranes. Gas. Sep. Purif. 1990, 4, 66–74. [Google Scholar] [CrossRef]
- Esposito, E.; Bruno, R.; Monteleone, M.; Fuoco, A.; Ferrando Soria, J.; Pardo, E.; Armentano, D.; Jansen, J.C. Glassy PEEK-WC vs. Rubbery Pebax®1657 Polymers: Effect on the Gas Transport in CuNi-MOF Based Mixed Matrix Membranes. Appl. Sci. 2020, 10, 1310. [Google Scholar] [CrossRef] [Green Version]
- Longo, M.; De Santo, M.P.; Esposito, E.; Fuoco, A.; Monteleone, M.; Giorno, L.; Jansen, J.C. Force spectroscopy determination of Young’s modulus in mixed matrix membranes. Polymer (Guildf) 2018, 156, 22–29. [Google Scholar] [CrossRef]
- Paul, D.R. Effect of immobilizing adsorption on the diffusion time lag. J. Polym. Sci. Part A-2 Polym. Phys. 1969, 7, 1811–1818. [Google Scholar] [CrossRef]
- Grzywna, Z.; Podkowka, J. Effect of immobilizing adsorption on mass transport through polymer films. J. Memb. Sci. 1981, 8, 23–31. [Google Scholar] [CrossRef]
- Fuoco, A.; Rizzuto, C.; Tocci, E.; Monteleone, M.; Esposito, E.; Budd, P.M.; Carta, M.; Comesaña-Gándara, B.; McKeown, N.B.; Jansen, J.C. The origin of size-selective gas transport through polymers of intrinsic microporosity. J. Mater. Chem. A 2019, 7, 20121–20126. [Google Scholar] [CrossRef]
Tangent Method | Fitting Method | ||||||||
---|---|---|---|---|---|---|---|---|---|
Gas | P | D | S | P1 | P2 | D1 | D2 | S1 | S2 |
CH4 | 3.79 | 1.95 | 1.46 | 1.66 | 2.11 | 13.5 | 1.19 | 0.09 | 1.32 |
C2H4 | 14.4 | 0.87 | 12.4 | 6.49 | 7.93 | 15.6 | 0.48 | 0.31 | 12.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuoco, A.; Monteleone, M.; Esposito, E.; Bruno, R.; Ferrando-Soria, J.; Pardo, E.; Armentano, D.; Jansen, J.C. Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination. Computation 2020, 8, 28. https://doi.org/10.3390/computation8020028
Fuoco A, Monteleone M, Esposito E, Bruno R, Ferrando-Soria J, Pardo E, Armentano D, Jansen JC. Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination. Computation. 2020; 8(2):28. https://doi.org/10.3390/computation8020028
Chicago/Turabian StyleFuoco, Alessio, Marcello Monteleone, Elisa Esposito, Rosaria Bruno, Jesús Ferrando-Soria, Emilio Pardo, Donatella Armentano, and Johannes Carolus Jansen. 2020. "Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination" Computation 8, no. 2: 28. https://doi.org/10.3390/computation8020028
APA StyleFuoco, A., Monteleone, M., Esposito, E., Bruno, R., Ferrando-Soria, J., Pardo, E., Armentano, D., & Jansen, J. C. (2020). Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination. Computation, 8(2), 28. https://doi.org/10.3390/computation8020028