Exploring the Chemical Space of Cytochrome P450 Inhibitors Using Integrated Physicochemical Parameters, Drug Efficiency Metrics and Decision Tree Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database Collection
2.2. Selection of Efficient Inhibitors of CYP Isoforms
2.2.1. Lipophilic Efficiency (LipE)
2.2.2. Ligand Efficiency (LE)
2.3. Computation of Physicochemical Properties
2.4. Decision Trees (C4.5 DT)
2.5. Model Performance Evaluation
3. Results
3.1. Activity and Efficiency Landscape of the Selected CYP Isoforms Inhibitors
3.2. Lipophilic Efficiency
3.3. Ligand Efficiency
3.4. Physicochemical Properties
4. Decision Trees
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Meanwell, N.A. Improving drug design: An update on recent applications of efficiency metrics, strategies for replacing problematic elements, and compounds in nontraditional drug space. Chem. Res. Toxicol. 2016, 29, 564–616. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.; Brown, D.; Alexander, R.; March, R.; Morgan, P.; Satterthwaite, G.; Pangalos, M.N. Lessons learned from the fate of AstraZeneca’s drug pipeline: A five-dimensional framework. Nat. Rev. Drug Discov. 2014, 13, 419. [Google Scholar] [CrossRef] [PubMed]
- Morgan, P.; Brown, D.G.; Lennard, S.; Anderton, M.J.; Barrett, J.C.; Eriksson, U.; Fidock, M.; Hamrén, B.; Johnson, A.; March, R.E. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat. Rev. Drug Discov. 2018, 17, 167–181. [Google Scholar] [PubMed]
- Taavitsainen, P.; Honkakoski, P.; Juvonen, R.; Pelkonen, O.; Raunio, H. Role of xenobiotic metabolism in drug discovery and development. Biotechnology-Volume XII: Fundamentals in Biotechnology, 2009; 11, 108. [Google Scholar]
- Williams, J.A.; Hyland, R.; Jones, B.C.; Smith, D.A.; Hurst, S.; Goosen, T.C.; Peterkin, V.; Koup, J.R.; Ball, S.E. Drug-drug interactions for UDP-glucuronosyltransferase substrates: A pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab. Dispos. 2004, 32, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Bertz, R.J.; Granneman, G.R. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin. Pharmacokinet. 1997, 32, 210–258. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, E. Clinically important pharmacokinetic drug–drug interactions: Role of cytochrome P450 enzymes. J. Clin. Pharm. Ther. 1998, 23, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Caldwell, G.W. Metabolism profiling, and cytochrome P450 inhibition & induction in drug discovery. Curr. Top. Med. Chem. 2001, 1, 403–425. [Google Scholar] [PubMed]
- Friedman, M.A.; Woodcock, J.; Lumpkin, M.M.; Shuren, J.E.; Hass, A.E.; Thompson, L.J. The safety of newly approved medicines: Do recent market removals mean there is a problem? JAMA 1999, 281, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Lasser, K.E.; Allen, P.D.; Woolhandler, S.J.; Himmelstein, D.U.; Wolfe, S.M.; Bor, D.H. Timing of new black box warnings and withdrawals for prescription medications. JAMA 2002, 287, 2215–2220. [Google Scholar] [CrossRef]
- Hasler, J.A.; Estabrook, R.; Murray, M.; Pikuleva, I.; Waterman, M.; Capdevila, J.; Holla, V.; Helvig, C.; Falck, J.R.; Farrell, G. Human cytochromes P450. Mol. Asp. Med. 1999, 20, 1–137. [Google Scholar] [CrossRef]
- Nassar, A.-E.F.; Kamel, A.M.; Clarimont, C. Improvingthe decision-making process in structural modification of drug candidates: Reducing toxicity. Drug Discov. Today 2004, 9, 1055–1064. [Google Scholar] [CrossRef]
- Lewis, D.F.; Dickins, M. Substrate SARs in human P450s. Drug Discov. Today 2002, 7, 918–925. [Google Scholar] [CrossRef]
- Lewis, D.F.; Dickins, M. Baseline lipophilicity relationships in human cytochromes P450 associated with drug metabolism. Drug Metab. Rev. 2003, 35, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.P. Generation of a set of simple, interpretable ADMET rules of thumb. J. Med. Chem. 2008, 51, 817–834. [Google Scholar] [CrossRef] [PubMed]
- Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 2012, 7, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 2007, 6, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.P.; Hersey, A.; Montanari, D.; Overington, J. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat. Rev. Drug Discov. 2011, 10, 197. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.P.; Davis, A.M.; Chohan, K.K.; Paine, S.W.; Boyer, S.; Gavaghan, C.L.; Arnby, C.H.; Kankkonen, C.; Albertson, N. Generation of in-silico cytochrome P450 1A2,2C9,2C19,2D6, and 3A4 inhibition QSAR models. J. Comput. Aided Mol. Des. 2007, 21, 559–573. [Google Scholar] [CrossRef]
- Lewis, D.F.; Lake, B.G.; Ito, Y.; Dickins, M. Lipophilicity relationships in inhibitors of CYP2C9 and CYP2C19 enzymes. J. Enzym. Inhib. Med. Chem. 2006, 21, 385–389. [Google Scholar] [CrossRef]
- Lewis, D.F.; Lake, B.G.; Dickins, M. Quantitative structure-activity relationships (QSARs) in inhibitors of various cytochromes P450: The importance of compound lipophilicity. J. Enzym. Inhib. Med. Chem. 2007, 22, 1–6. [Google Scholar] [CrossRef]
- Ai, C.; Li, Y.; Wang, Y.; Chen, Y.; Yang, L. Insight into the effects of chiral isomers quinidine and quinine on CYP2D6 inhibition. Bioorg. Med. Chem. Lett. 2009, 19, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Didziapetris, R.; Dapkunas, J.; Sazonovas, A.; Japertas, P. Trainable structure–activity relationship model for virtual screening of CYP3A4 inhibition. J. Comput. Aided Mol. Design 2010, 24, 891–906. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Roy, P.P. Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques. Eur. J. Med. Chem. 2009, 44, 2913–2922. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Lu, A.Y. Inhibition and induction of cytochrome P450 and the clinical implications. Clin. Pharmacokinet. 1998, 35, 361–390. [Google Scholar] [CrossRef] [PubMed]
- Schoch, G.A.; Yano, J.K.; Wester, M.R.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. Structure of human microsomal cytochrome P450 2C8 evidence for a peripheral fatty acid binding site. J. Biol. Chem. 2004, 279, 9497–9503. [Google Scholar] [CrossRef]
- Szklarz, G.D.; Halpert, J.R. Molecular basis of P450 inhibition and activation: Implications for drug development and drug therapy. Drug Metab. Dispos. 1998, 26, 1179–1184. [Google Scholar] [PubMed]
- Williams, P.A.; Cosme, J.; Ward, A.; Angove, H.C.; Vinković, D.M.; Jhoti, H. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 2003, 424, 464. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.A.; Cosme, J.; Vinković, D.M.; Ward, A.; Angove, H.C.; Day, P.J.; Vonrhein, C.; Tickle, I.J.; Jhoti, H. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 2004, 305, 683–686. [Google Scholar] [CrossRef]
- Wester, M.R.; Yano, J.K.; Schoch, G.A.; Yang, C.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-Å resolution. J. Biol. Chem. 2004, 279, 35630–35637. [Google Scholar] [CrossRef]
- Yano, J.K.; Wester, M.R.; Schoch, G.A.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-Å resolution. J. Biol. Chem. 2004, 279, 38091–38094. [Google Scholar] [CrossRef]
- Wester, M.R.; Johnson, E.F.; Marques-Soares, C.; Dansette, P.M.; Mansuy, D.; Stout, C.D. Structure of a substrate complex of mammalian cytochrome P450 2C5 at 2.3 Å resolution: Evidence for multiple substrate binding modes. Biochemistry 2003, 42, 6370–6379. [Google Scholar] [CrossRef]
- Fowler, S.; Zhang, H. In vitro evaluation of reversible and irreversible cytochrome P450 inhibition: Current status on methodologies and their utility for predicting drug–drug interactions. AAPS J. 2008, 10, 410–424. [Google Scholar] [CrossRef]
- Nembri, S.; Grisoni, F.; Consonni, V.; Todeschini, R. In silico prediction of cytochrome p450-drug interaction: Qsars for cyp3a4 and cyp2c9. Int. J. Mol. Sci. 2016, 17, 914. [Google Scholar] [CrossRef]
- Dimelow, R.J.; Metcalfe, P.D.; Thomas, S. In Silico Models of Drug Metabolism and Drug Interactions. In Encyclopedia of Drug Metabolism and Interactions; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Refsgaard, H.H.; Jensen, B.F.; Christensen, I.T.; Hagen, N.; Brockhoff, P.B. In silico prediction of cytochrome P450 inhibitors. Drug Dev. Res. 2006, 67, 417–429. [Google Scholar] [CrossRef]
- Marechal, J.-D.; Yu, J.; Brown, S.; Kapelioukh, I.; Rankin, E.M.; Wolf, C.R.; Roberts, G.C.; Paine, M.J.; Sutcliffe, M.J. In silico and in vitro screening for inhibition of cytochrome P450 CYP3A4 by comedications commonly used by patients with cancer. Drug Metab. Dispos. 2006, 34, 534–538. [Google Scholar] [CrossRef]
- Ashour, M.L.; Youssef, F.S.; Gad, H.A.; Wink, M. Inhibition of cytochrome P450 (CYP3A4) activity by extracts from 57 plants used in traditional chinese medicine (TCM). Pharmacogn. Mag. 2017, 13, 300. [Google Scholar]
- Nookala, A.R.; Li, J.; Ande, A.; Wang, L.; Vaidya, N.K.; Li, W.; Kumar, S.; Kumar, A. Effect of methamphetamine on spectral binding, ligand docking and metabolism of anti-hiv drugs with CYP3A4. PLoS ONE 2016, 11, e0146529. [Google Scholar] [CrossRef]
- Hochleitner, J.; Akram, M.; Ueberall, M.; Davis, R.A.; Waltenberger, B.; Stuppner, H.; Sturm, S.; Ueberall, F.; Gostner, J.M.; Schuster, D. A combinatorial approach for the discovery of cytochrome P450 2D6 inhibitors from nature. Sci. Rep. 2017, 7, 8071. [Google Scholar] [CrossRef]
- Su, B.-H.; Tu, Y.-s.; Lin, C.; Shao, C.-Y.; Lin, O.A.; Tseng, Y.J. Rule-based prediction models of cytochrome P450 inhibition. J. Chem. Inf. Model. 2015, 55, 1426–1434. [Google Scholar] [CrossRef]
- Martiny, V.Y.; Carbonell, P.; Chevillard, F.; Moroy, G.; Nicot, A.B.; Vayer, P.; Villoutreix, B.O.; Miteva, M.A. Integrated structure-and ligand-based in silico approach to predict inhibition of cytochrome P450 2D6. Bioinformatics 2015, 31, 3930–3937. [Google Scholar]
- Kaur, P.; Chamberlin, A.R.; Poulos, T.L.; Sevrioukova, I.F. Structure-based inhibitor design for evaluation of a CYP3A4 pharmacophore model. J. Med. Chem. 2015, 59, 4210–4220. [Google Scholar] [CrossRef]
- Baudry, J.; Li, W.; Pan, L.; Berenbaum, M.R.; Schuler, M.A. Molecular docking of substrates and inhibitors in the catalytic site of CYP6B1, an insect cytochrome P450 monooxygenase. Protein Eng. 2003, 16, 577–587. [Google Scholar] [CrossRef]
- Mukhtar, S.; Kiani, Y.S.; Jabeen, I. Molecular docking simulations and GRID-independent molecular descriptor (GRIND) analysis to probe stereoselective interactions of CYP3A4 inhibitors. Med. Chem. Res. 2017, 26, 2322–2335. [Google Scholar] [CrossRef]
- Jensen, B.F.; Vind, C.; Padkjær, S.B.; Brockhoff, P.B.; Refsgaard, H.H. In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors. J. Med. Chem. 2007, 50, 501–511. [Google Scholar] [CrossRef]
- Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [Google Scholar] [CrossRef]
- Bio-Loom Program, T.V. BioByte Co. Available online: http://biobyte.com/bb/prod/bioloom.html (accessed on 23 May 2019).
- Hopkins, A.L.; Groom, C.R.; Alex, A. Ligand efficiency: A useful metric for lead selection. Drug Discov. Today 2004, 9, 430–431. [Google Scholar] [CrossRef]
- Murray, C.W.; Erlanson, D.A.; Hopkins, A.L.; Keserü, G.r.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H.; Richmond, N.J. Validity of Ligand Efficiency Metrics; ACS Publications: Washington, DC, USA, 2014. [Google Scholar]
- Kuntz, I.; Chen, K.; Sharp, K.; Kollman, P. The maximal affinity of ligands. Proc. Natl. Acad. Sci. USA 1999, 96, 9997–10002. [Google Scholar] [CrossRef] [Green Version]
- Lagorce, D.; Bouslama, L.; Becot, J.; Miteva, M.A.; Villoutreix, B.O. FAF-Drugs4: Free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics 2017, 33, 3658–3660. [Google Scholar] [CrossRef]
- Moe. Molecular Operating Environment; Chemical Computing Group Inc.: Montreal, QC, Canada, 2013; Volume 8, H3A 2R7,2015.49. [Google Scholar]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Johnson, T.W.; Dress, K.R.; Edwards, M. Using the Golden Triangle to optimize clearance and oral absorption. Bioorg. Med. Chem. Lett. 2009, 19, 5560–5564. [Google Scholar] [CrossRef]
- Hughes, J.D.; Blagg, J.; Price, D.A.; Bailey, S.; DeCrescenzo, G.A.; Devraj, R.V.; Ellsworth, E.; Fobian, Y.M.; Gibbs, M.E.; Gilles, R.W. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett. 2008, 18, 4872–4875. [Google Scholar] [CrossRef]
- Frank, E.; Hall, M.; Trigg, L.; Holmes, G.; Witten, I.H. Data mining in bioinformatics using Weka. Bioinformatics 2004, 20, 2479–2481. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef] [Green Version]
- Jantan, H.; Hamdan, A.R.; Othman, Z.A. Human talent prediction in HRM using C4. 5 classification algorithm. Int. J. Comput. Sci. Eng. 2010, 2, 2526–2534. [Google Scholar]
- Patil, T.R.; Sherekar, S. Performance analysis of Naive Bayes and J48 classification algorithm for data classification. Int. J. Comput. Sci. Appl. 2013, 6, 256–261. [Google Scholar]
- Baratloo, A.; Hosseini, M.; Negida, A.; El Ashal, G. Part 1: Simple definition and calculation of accuracy, sensitivity and specificity. Emergency 2015, 3, 48–49. [Google Scholar]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta BBA Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- Clutterbuck, L.A.; Posada, C.G.; Visintin, C.; Riddall, D.R.; Lancaster, B.; Gane, P.J.; Garthwaite, J.; Selwood, D.L. Oxadiazolylindazole sodium channel modulators are neuroprotective toward hippocampal neurones. J. Med. Chem. 2009, 52, 2694–2707. [Google Scholar] [CrossRef]
- Fulton, J.E., Jr.; Leyden, J.; Papa, C. TReatment of vitiligo with topical methoxsalen and blacklite. Arch. Dermatol. 1969, 100, 224–229. [Google Scholar] [CrossRef]
- Parrish, J.A.; Fitzpatrick, T.B.; Tanenbaum, L.; Pathak, M.A. Photochemotherapy of Psoriasis with Oral Methoxsalen and Longwave Ultraviolet Light. N. Engl. J. Med. 1974, 291, 1207–1211. [Google Scholar] [CrossRef]
- Palmer, W.S.; Alam, M.; Arzeno, H.B.; Chang, K.-C.; Dunn, J.P.; Goldstein, D.M.; Gong, L.; Goyal, B.; Hermann, J.C.; Hogg, J.H. Development of amino-pyrimidine inhibitors of c-Jun N-terminal kinase (JNK): Kinase profiling guided optimization of a 1,2,3-benzotriazole lead. Bioorg. Med. Chem. Lett. 2013, 23, 1486–1492. [Google Scholar] [CrossRef]
- Mustafa, S.M.; Bavadekar, S.A.; Ma, G.; Moore, B.M.; Feller, D.R.; Miller, D.D. Synthesis and biological studies of yohimbine derivatives on human α 2C-adrenergic receptors. Bioorg. Med. Chem. Lett. 2005, 15, 2758–2760. [Google Scholar] [CrossRef]
- Saint-Ruf, G.; Chanh, P.H.; Hoi, B. Yohimbine Derivatives, Process for Their Preparation and Their Applications. Google Patents US3940387A, 1976. [Google Scholar]
- Hii, J.T.; Wyse, D.G.; Gillis, A.M.; Duff, H.J.; Solylo, M.A.; Mitchell, L.B. Precordial QT interval dispersion as a marker of torsade de pointes. Disparate effects of class Ia antiarrhythmic drugs and amiodarone. Circulation 1992, 86, 1376–1382. [Google Scholar] [CrossRef]
- Haydon, D.J.; Bennett, J.M.; Brown, D.; Collins, I.; Galbraith, G.; Lancett, P.; Macdonald, R.; Stokes, N.R.; Chauhan, P.K.; Sutariya, J.K. Creating an antibacterial with in vivo efficacy: Synthesis and characterization of potent inhibitors of the bacterial cell division protein FtsZ with improved pharmaceutical properties. J. Med. Chem. 2010, 53, 3927–3936. [Google Scholar] [CrossRef]
- Gallagher, E.P.; Kunze, K.L.; Stapleton, P.L.; Eaton, D.L. The Kinetics of Aflatoxin B1Oxidation by Human cDNA-Expressed and Human Liver Microsomal Cytochromes P450 1A2 and 3A4. Toxicol. Appl. Pharmacol. 1996, 141, 595–606. [Google Scholar] [CrossRef]
- De Savi, C.; Pape, A.; Cumming, J.G.; Ting, A.; Smith, P.D.; Burrows, J.N.; Mills, M.; Davies, C.; Lamont, S.; Milne, D. The design and synthesis of novel N-hydroxyformamide inhibitors of ADAM-TS4 for the treatment of osteoarthritis. Bioorg. Med. Chem. Lett. 2011, 21, 1376–1381. [Google Scholar] [CrossRef]
- Zimmermann, K.; Wittman, M.D.; Saulnier, M.G.; Velaparthi, U.; Langley, D.R.; Sang, X.; Frennesson, D.; Carboni, J.; Li, A.; Greer, A. Balancing oral exposure with Cyp3A4 inhibition in benzimidazole-based IGF-IR inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 4075–4080. [Google Scholar] [CrossRef]
- Paul Gleeson, M.; Hersey, A.; Hannongbua, S. In-silico ADME models: A general assessment of their utility in drug discovery applications. Curr. Top. Med. Chem. 2011, 11, 358–381. [Google Scholar] [CrossRef]
- Doak, B.C.; Over, B.; Giordanetto, F.; Kihlberg, J. Oral druggable space beyond the rule of 5: Insights from drugs and clinical candidates. Chem. Biol. 2014, 21, 1115–1142. [Google Scholar] [CrossRef]
- van de Waterbeemd, H. Improving compound quality through in vitro and in silico physicochemical profiling. Chem. Biodivers. 2009, 6, 1760–1766. [Google Scholar] [CrossRef]
- Hann, M.M.; Keserü, G.M. Finding the sweet spot: The role of nature and nurture in medicinal chemistry. Nat. Rev. Drug Discov. 2012, 11, 355. [Google Scholar] [CrossRef]
- Morphy, R.; Rankovic, Z. The physicochemical challenges of designing multiple ligands. J. Med. Chem. 2006, 49, 4961–4970. [Google Scholar] [CrossRef]
- Mugumbate, G.; Overington, J.P. The relationship between target-class and the physicochemical properties of antibacterial drugs. Bioorg. Med. Chem. 2015, 23, 5218–5224. [Google Scholar] [CrossRef] [Green Version]
- Lagorce, D.; Douguet, D.; Miteva, M.A.; Villoutreix, B.O. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci. Rep. 2017, 7, 46277. [Google Scholar] [CrossRef]
- Eldehna, W.M.; Fares, M.; Ibrahim, H.S.; Alsherbiny, M.A.; Aly, M.H.; Ghabbour, H.A.; Abdel-Aziz, H.A. Synthesis and cytotoxic activity of biphenylurea derivatives containing indolin-2-one moieties. Molecules 2016, 21, 762. [Google Scholar] [CrossRef]
- Elekofehinti, O.O.; Ejelonu, O.C.; Kamdem, J.P.; Akinlosotu, O.B.; Famuti, A.; Adebowale, D.D.; Iwaloye, O.; Bulu, Y.I.; Kade, I.J.; Rocha, J.B.T. Discovery of potential visfatin activators using in silico docking and ADME predictions as therapy for type 2 diabetes. Beni Suef Univ. J. Basic Appl. Sci. 2018, 7, 241–249. [Google Scholar] [CrossRef]
- Hobson, A.D.; Harris, C.M.; van der Kam, E.L.; Turner, S.C.; Abibi, A.; Aguirre, A.L.; Bousquet, P.; Kebede, T.; Konopacki, D.B.; Gintant, G. Discovery of A-971432, an orally bioavailable selective sphingosine-1-phosphate receptor 5 (S1P5) agonist for the potential treatment of neurodegenerative disorders. J. Med. Chem. 2015, 58, 9154–9170. [Google Scholar] [CrossRef]
- Sevrioukova, I.F.; Poulos, T.L. Understanding the mechanism of cytochrome P450 3A4: Recent advances and remaining problems. Dalton Trans. 2013, 42, 3116–3126. [Google Scholar] [CrossRef]
- Waring, M.J. Lipophilicity in drug discovery. Expert Opinion Drug Discov. 2010, 5, 235–248. [Google Scholar] [CrossRef]
- Lewis, D.F.; Jacobs, M.N.; Dickins, M. Compound lipophilicity for substrate binding to human P450s in drug metabolism. Drug Discov. Today 2004, 9, 530–537. [Google Scholar] [CrossRef]
- Stenberg, P.; Norinder, U.; Luthman, K.; Artursson, P. Experimental and computational screening models for the prediction of intestinal drug absorption. J. Med. Chem. 2001, 44, 1927–1937. [Google Scholar] [CrossRef]
- Cummins, C.L.; Jacobsen, W.; Benet, L.Z. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 2002, 300, 1036–1045. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Le, J.; Abraham, M.H.; Hersey, A.; Eddershaw, P.J.; Luscombe, C.N.; Boutina, D.; Beck, G.; Sherborne, B.; Cooper, I. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure–activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci. 2001, 90, 749–784. [Google Scholar] [CrossRef]
- Upthagrove, A.L.; Nelson, W.L. Importance of Amine pK a and distribution coefficient in the metabolism of fluorinated propranolol derivatives. preparation, identification of metabolite regioisomers, and metabolism by CYP2D6. Drug Metab. Dispos. 2001, 29, 1377–1388. [Google Scholar]
- Van De Waterbeemd, H.; Gifford, E. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug Discov. 2003, 2, 192–204. [Google Scholar] [CrossRef]
- Lee, H.; Yeom, H.; Kim, Y.G.; Yoon, C.N.; Jin, C.; Choi, J.S.; Kim, B.-R.; Kim, D.-H. Structure-related inhibition of human hepatic caffeine N3-demethylation by naturally occurring flavonoids. Biochem. Pharmacol. 1998, 55, 1369–1375. [Google Scholar] [CrossRef]
- Lovering, F. Escape from flatland 2: Complexity and promiscuity. MedChemComm 2013, 4, 515–519. [Google Scholar] [CrossRef]
- Meanwell, N.A. Improving drug candidates by design: A focus on physicochemical properties as a means of improving compound disposition and safety. Chem. Res. Toxicol. 2011, 24, 1420–1456. [Google Scholar] [CrossRef]
- Abad-Zapatero, C. Ligand Efficiency Indices for Drug Discovery: Towards An Atlas-Guided Paradigm; Academic Press: Waltham, MA, USA, 2013. [Google Scholar]
- Hopkins, A.L.; Mason, J.S.; Overington, J.P. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol. 2006, 16, 127–136. [Google Scholar] [CrossRef]
- Price, D.A.; Blagg, J.; Jones, L.; Greene, N.; Wager, T. Physicochemical drug properties associated with in vivo toxicological outcomes: A review. Expert Opin. Drug Metab. Toxicol. 2009, 5, 921–931. [Google Scholar]
- Palm, K.; Stenberg, P.; Luthman, K.; Artursson, P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res. 1997, 14, 568–571. [Google Scholar] [CrossRef]
- Lovering, F.; Bikker, J.; Humblet, C. Escape from flatland: Increasing saturation as an approach to improving clinical success. J. Med. Chem. 2009, 52, 6752–6756. [Google Scholar] [CrossRef]
- Ritchie, T.J.; Macdonald, S.J. The impact of aromatic ring count on compound developability–are too many aromatic rings a liability in drug design? Drug Discov. Today 2009, 14, 1011–1020. [Google Scholar] [CrossRef]
- Vasanthanathan, P.; Taboureau, O.; Oostenbrink, C.; Vermeulen, N.P.; Olsen, L.; Jorgensen, F.S. Classification of cytochrome P450 1A2 inhibitors and non-inhibitors by machine learning techniques. Drug Metab. Dispos. 2008, 37, 658–664. [Google Scholar] [CrossRef]
- Jónsdóttir, S.Ó.; Ringsted, T.; Nikolov, N.G.; Dybdahl, M.; Wedebye, E.B.; Niemelä, J.R. Identification of cytochrome P450 2D6 and 2C9 substrates and inhibitors by QSAR analysis. Bioorg. Med. Chem. 2012, 20, 2042–2053. [Google Scholar] [CrossRef]
- Ekins, S.; Bravi, G.; Binkley, S.; Gillespie, J.S.; Ring, B.J.; Wikel, J.H.; Wrighton, S.A. Three-and four-dimensional-quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug Metab. Dispos. 2000, 28, 994–1002. [Google Scholar]
- Yap, C.W.; Chen, Y.Z. Prediction of cytochrome P450 3A4,2D6, and 2C9 inhibitors and substrates by using support vector machines. J. Chem. Inf. Model. 2005, 45, 982–992. [Google Scholar] [CrossRef]
- Burton, J.; Ijjaali, I.; Barberan, O.; Petitet, F.; Vercauteren, D.P.; Michel, A. Recursive partitioning for the prediction of cytochromes P450 2D6 and 1A2 inhibition: Importance of the quality of the dataset. J. Med. Chem. 2006, 49, 6231–6240. [Google Scholar] [CrossRef]
- Kriegl, J.M.; Arnhold, T.; Beck, B.; Fox, T. A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J. Comput. Aided Mol. Des. 2005, 19, 189–201. [Google Scholar] [CrossRef]
- Chohan, K.K.; Paine, S.W.; Mistry, J.; Barton, P.; Davis, A.M. A rapid computational filter for cytochrome P450 1A2 inhibition potential of compound libraries. J. Med. Chem. 2005, 48, 5154–5161. [Google Scholar] [CrossRef]
- Arimoto, R.; Prasad, M.-A.; Gifford, E.M. Development of CYP3A4 inhibition models: Comparisons of machine-learning techniques and molecular descriptors. J. Biomol. Screen. 2005, 10, 197–205. [Google Scholar] [CrossRef]
- Burton, J.; Danloy, E.; Vercauteren, D. Fragment-based prediction of cytochromes P450 2D6 and 1A2 inhibition by recursive partitioning. SAR QSAR Environ. Res. 2009, 20, 185–205. [Google Scholar] [CrossRef]
- Choi, I.; Kim, S.Y.; Kim, H.; Kang, N.S.; Bae, M.A.; Yoo, S.-E.; Jung, J.; No, K.T. Classification models for CYP450 3A4 inhibitors and non-inhibitors. Eur. J. Med. Chem. 2009, 44, 2354–2360. [Google Scholar] [CrossRef]
- Cheng, F.; Yu, Y.; Shen, J.; Yang, L.; Li, W.; Liu, G.; Lee, P.W.; Tang, Y. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. J. Chem. Inf. Model. 2011, 51, 996–1011. [Google Scholar] [CrossRef]
- Hammann, F.; Gutmann, H.; Baumann, U.; Helma, C.; Drewe, J. Classification of cytochrome P450 activities using machine learning methods. Mol. Pharm. 2009, 6, 1920–1926. [Google Scholar] [CrossRef]
- Lee, J.; Basith, S.; Cui, M.; Kim, B.; Choi, S. In silico prediction of multiple-category classification model for cytochrome P450 inhibitors and non-inhibitors using machine-learning method. SAR QSAR Environ. Res. 2017, 28, 863–874. [Google Scholar] [CrossRef]
- Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 2017, 17, 97. [Google Scholar] [CrossRef]
- Li, A.P. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov. Today 2001, 6, 357–366. [Google Scholar] [CrossRef]
- Giacomini, K.M.; Krauss, R.M.; Roden, D.M.; Eichelbaum, M.; Hayden, M.R.; Nakamura, Y. When good drugs go bad. Nature 2007, 446, 975. [Google Scholar] [CrossRef]
- Arrowsmith, J. Phase III and submission failures: 2007–2010. Nature Rev. Drug Discov. 2011, 10, 1–2. [Google Scholar] [CrossRef]
- Arrowsmith, J. Trial Watch: Phase II Failures: 2008–2010; Nature Publishing Group: London, UK, 2011. [Google Scholar]
- Arrowsmith, J.; Miller, P. Trial Watch: Phase II and Phase III Attrition Rates 2011–2012; Nature Publishing Group: London, UK, 2013. [Google Scholar]
- Waring, M.J.; Arrowsmith, J.; Leach, A.R.; Leeson, P.D.; Mandrell, S.; Owen, R.M.; Pairaudeau, G.; Pennie, W.D.; Pickett, S.D.; Wang, J. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 2015, 14, 475. [Google Scholar] [CrossRef]
- Harrison, R.K. Phase II and Phase III Failures: 2013–2015; Nature Publishing Group: London, UK, 2016. [Google Scholar]
- Kirchmair, J.; Göller, A.H.; Lang, D.; Kunze, J.; Testa, B.; Wilson, I.D.; Glen, R.C.; Schneider, G. Predicting drug metabolism: Experiment and/or computation? Nat. Rev. Drug Discov. 2015, 14, 387. [Google Scholar] [CrossRef]
- Huang, R.; Xia, M.; Sakamuru, S.; Zhao, J.; Lynch, C.; Zhao, T.; Zhu, H.; Austin, C.P.; Simeonov, A. Expanding biological space coverage enhances the prediction of drug adverse effects in human using in vitro activity profiles. Sci. Rep. 2018, 8, 3783. [Google Scholar] [CrossRef]
- Orita, M.; Ohno, K.; Niimi, T. Two ‘Golden Ratio’indices in fragment-based drug discovery. Drug Discov. Today 2009, 14, 321–328. [Google Scholar] [CrossRef]
- Congreve, M.; Carr, R.; Murray, C.; Jhoti, H. A ‘rule of three’for fragment-based lead discovery? Drug Discov. Today 2003, 8, 876–877. [Google Scholar]
- Perola, E. An analysis of the binding efficiencies of drugs and their leads in successful drug discovery programs. J. Med. Chem. 2010, 53, 2986–2997. [Google Scholar] [CrossRef]
- Tarcsay, A.k.; Nyíri, K.; Keserü, G.r.M. Impact of lipophilic efficiency on compound quality. J. Med. Chem. 2012, 55, 1252–1260. [Google Scholar] [CrossRef]
- Schultes, S.; de Graaf, C.; Haaksma, E.E.; de Esch, I.J.; Leurs, R.; Krämer, O. Ligand efficiency as a guide in fragment hit selection and optimization. Drug Discov. Today Technol. 2010, 7, e157–e162. [Google Scholar] [CrossRef] [Green Version]
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef]
- Leeson, P.D. Molecular inflation, attrition and the rule of five. Adv. Drug Deliv. Rev. 2016, 101, 22–33. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Rostkowski, M.; Spjuth, O.; Rydberg, P. WhichCyp: Prediction of cytochromes P450 inhibition. Bioinformatics 2013, 29, 2051–2052. [Google Scholar] [CrossRef]
- Raunio, H.; Kuusisto, M.; Juvonen, R.O.; Pentikäinen, O.T. Modeling of interactions between xenobiotics and cytochrome P450 (CYP) enzymes. Front. Pharmacol. 2015, 6, 123. [Google Scholar] [CrossRef]
- Schyman, P.; Liu, R.; Desai, V.; Wallqvist, A. vNN web server for ADMET predictions. Front. Pharmacol. 2017, 8, 889. [Google Scholar] [CrossRef]
- Grime, K.; D Ferguson, D.; J Riley, R. The use of HepaRG and human hepatocyte data in predicting CYP induction drug-drug interactions via static equation and dynamic mechanistic modelling approaches. Curr. Drug Metab. 2010, 11, 870–885. [Google Scholar] [CrossRef]
- Lu, Y.; Figler, B.; Huang, H.; Tu, Y.-C.; Wang, J.; Cheng, F. Characterization of the mechanism of drug-drug interactions from PubMed using MeSH terms. PLoS ONE 2017, 12, e0173548. [Google Scholar] [CrossRef]
- Sohlenius-Sternbeck, A.-K.; Meyerson, G.; Hagbjörk, A.-L.; Juric, S.; Terelius, Y. A strategy for early-risk predictions of clinical drug–drug interactions involving the GastroPlusTM DDI module for time-dependent CYP inhibitors. Xenobiotica 2018, 48, 348–356. [Google Scholar] [CrossRef]
- Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties; ACS Publications: Washington, DC, USA, 2012. [Google Scholar]
CYP Isoform | No. of Compounds | IC50 µM Range | clogP Range | Max clogP Range | Mean clogP | LipE | LE | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Whole Data Set of CYP Inhibitors | CYP Inhibitors Fulfilling Efficiency Criteria (clogP ~1–3, LipE ≥ 5, LE ≥ 0.29) | Whole Data Set of CYP Inhibitors | CYP Inhibitors Fulfilling Efficiency Criteria (clogP ~1–3, LipE ≥ 5, LE ≥ 0.29) | ||||||||||||||||
LipE Range | Max LipE Range | Mean LipE | No. of Comps | Mean clogP | Mean LipE | HA Count Range | Max HA Count Range | Mean HA Count | LE Range | Max LE Range | Mean LE | Mean HA | Mean LE | ||||||
CYP1A2 | 612 | 0.0027–100 | −1.81–9.84 | 4–5 | 4.05 | −5.47–7.06 | 1–2 | 1.38 | 9 | 2.16 | 5.39 | 8–122 | 20–30 | 25 | 0.069–0.90 | 0.2–0.3 | 0.35 | 19 | 0.52 |
CYP2C9 | 1341 | 0.0005–100 | −3.77–14.36 | 3–4 | 4.17 | −9.95–7.87 | <0,1–2 | 1.17 | 8 | 1.72 | 5.56 | 8–122 | 30–40 | 31 | 0.0168–0.92 | 0.2–0.3 | 0.26 | 27 | 0.38 |
CYP2C19 | 651 | 0.007–100 | −1.15–14.36 | 3–4 | 4.20 | −9.21–6.16 | 1–2 | 1.08 | 4 | 1.43 | 5.41 | 8–92 | 20–30 | 29 | 0.075–0.93 | 0.2–0.3 | 0.29 | 23 | 0.49 |
CYP2D6 | 1647 | 0.000045–100 | −1.32–10.56 | 3–4 | 3.89 | −5.32–8.14 | 2–3 | 1.58 | 8 | 2.36 | 5.48 | 8–64 | 20–30 | 29 | 0.112–0.98 | 0.2–0.3 | 0.29 | 28 | 0.41 |
CYP3A4 | 2747 | 0.0001–100 | −1.55–14.36 | 3–4 | 3.96 | −9.17–8.49 | 2–3 | 1.61 | 17 | 2.28 | 6.02 | 8–92 | 30–40 | 33 | 0.065–1.07 | 0.2–0.3 | 0.25 | 34 | 0.36 |
Physicochemical Properties | CYP1A2 | CYP2C9 | CYP2C19 | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All CYP Inhibitors | CYP Inhibitors Fulfilling Efficiency Criteria (clogP ~1–3, LipE ≥ 5, LE ≥ 0.29) | All CYP Inhibitors | CYP Inhibitors Fulfilling Efficiency Criteria (clogP ~1–3, LipE ≥ 5, LE ≥ 0.29) | All CYP Inhibitors | CYP Inhibitors Fulfilling Efficiency Criteria (clogP ~1–3, LipE ≥ 5, LE ≥ 0.29) | ||||||||||||||||||||||
R | M | SEM | Mdn | P | R | M | SEM | Mdn | R | M | SEM | Mdn | P | R | M | SEM | Mdn | R | M | SEM | Mdn | P | R | M | SEM | Mdn | |
MW | 108.14–742.9 | 345.14 | 4.70 | 330.37 | 529.08 | 195.22–423.5 | 294.18 | 22.27 | 288.3 | 108.1–1321.8 | 434.5 | 3.23 | 423.5 | 615.57 | 310.35–457.5 | 382.56 | 15.22 | 384.9 | 136.19–1321.8 | 404.1 | 4.67 | 400.3 | 400.4 | 136.19–414.90 | 319.8 | 64.95 | 361.9 |
logP | 0.36–10.50 | 3.77 | 0.056 | 3.75 | 6.10 | 0.88–3.47 | 2.18 | 0.28 | 2.08 | 0.13–10.5 | 4.03 | 0.04 | 3.90 | 6.72 | 0.13–2.77 | 1.69 | 0.29 | 1.67 | 0.36–8.44 | 3.94 | 0.05 | 3.88 | 6.10 | 1.16–2.56 | 1.99 | 0.31 | 2.12 |
logD (pH7) | −1.32–10.72 | 3.31 | 0.062 | 3.32 | 5.81 | 0.57–3.45 | 2.15 | 0.31 | 2.20 | −3.35–10.72 | 3.09 | 0.04 | 3.08 | 5.78 | 0.05–2.31 | 1.41 | 0.29 | 1.53 | −1.87–8.43 | 3.18 | 0.06 | 3.14 | 5.68 | 0.16–2.08 | 1.30 | 0.42 | 1.48 |
logS | −9.37 to −4.71 | −4.34 | 0.04 | −4.22 | −2.69 | −4.11 to −2.78 | −3.26 | 0.16 | −3.1 | −12.16 to −1.42 | −4.91 | 0.037 | −4.85 | −2.88 | −4.07 to −2.18 | −3.26 | 0.19 | −3.35 | −8.90–−1.42 | −4.69 | 0.048 | −4.69 | −2.78 | −3.9 to −1.42 | −3.02 | 0.55 | −3.39 |
TPSA | 0–777.98 | 63.36 | 1.724 | 61.16 | 115.53 | 32.86–112.25 | 70.19 | 8.36 | 65.09 | 4.44–328.77 | 87.56 | 0.98 | 87.05 | 144.6 | 87.75–117.08 | 102.76 | 3.83 | 104.8 | 4.44–328.77 | 78.23 | 1.46 | 72.36 | 136.27 | 38.05–117.1 | 85.67 | 18.40 | 93.77 |
Rotatable bonds | 0–31 | 4.36 | 0.11 | 4 | 9 | 0–5 | 2 | 0.75 | 1 | 0–31 | 5.98 | 0.076 | 6 | 11 | 3–5 | 4.13 | 0.23 | 4 | 0–20 | 5.55 | 0.11 | 5 | 10 | 3–6 | 4.5 | 0.65 | 4.5 |
HBDs | 0–25 | 1.32 | 0.064 | 1 | 4 | 0–2 | 1.33 | 0.29 | 2 | 0–25 | 1.69 | 0.038 | 1 | 4 | 1–3 | 2 | 0.27 | 2 | 0–6 | 1.60 | 0.049 | 1 | 4 | 1–4 | 2.5 | 0.65 | 2.5 |
HBAs | 0–36 | 4.49 | 0.10 | 4 | 8 | 2–9 | 5 | 0.65 | 5 | 1–36 | 6.16 | 0.068 | 6 | 10 | 6–8 | 7.25 | 0.25 | 7 | 1–25 | 5.54 | 0.10 | 5 | 10 | 2–8 | 5.5 | 1.32 | 6 |
HBDs + HBAs | 0–16 | 5.82 | 0.15 | 6 | 12 | 3–11 | 6.33 | 0.82 | 6 | 1–11 | 7.85 | 0.09 | 8 | 13 | 7–10 | 9.25 | 0.45 | 9.5 | 1–31 | 7.14 | 0.13 | 7 | 13 | 5–11 | 8 | 1.29 | 8 |
Vsa_acc | 0–38.10 | 16.95 | 0.56 | 13.87 | 40.54 | 11.36–58.50 | 28.96 | 5.56 | 25.99 | 0–149.2 | 30.68 | 0.57 | 27.1 | 68.30 | 33.95–56.95 | 50.83 | 2.66 | 52.5 | 0–149.2 | 25.74 | 0.71 | 26.09 | 54.58 | 0–58.74 | 32.86 | 10.86 | 32.81 |
Vsa_don | 0–35.48 | 3.72 | 0.25 | 0 | 17.05 | 0–17.7 | 5.13 | 2.26 | 0 | 0–43.5 | 6.73 | 0.21 | 5.68 | 23.4 | 5.68–11.36 | 8.52 | 1.07 | 8.52 | 0–41.17 | 6.39 | 0.31 | 5.68 | 23.43 | 0–23.43 | 6.86 | 4.646 | 0 |
Rings | 0–6 | 2.51 | 0.038 | 2 | 4 | 1–3 | 2 | 0.33 | 2 | 1–11 | 3.16 | 0.026 | 3 | 5 | 2–3 | 2.88 | 0.12 | 3 | 1–6 | 2.98 | 0.038 | 3 | 5 | 1–4 | 2.75 | 0.63 | 3 |
Stereocenters | 0–7 | 0.33 | 0.028 | 0 | 2 | 0–1 | 0.11 | 0.11 | 0 | 0–15 | 0.79 | 0.037 | 0 | 3 | 0–2 | 0.24 | 0.32 | 0 | 0–15 | 0.76 | 0.059 | 0 | 3 | 0–3 | 1 | 0.71 | 0.5 |
Fsp3 | 0–1 | 0.23 | 0.006 | 0.22 | 0.46 | 0–0.33 | 0.093 | 0.035 | 0.08 | 0–1 | 0.28 | 0.004 | 0.28 | 0.52 | 0.06–0.39 | 0.24 | 0.04 | 0.24 | 0–1 | 0.29 | 0.006 | 0.28 | 0.63 | 0.16–0.3 | 0.233 | 0.02 | 0.235 |
Formal Charges (pH7) | −1–1 | 0.13 | 0.018 | 0 | 1 | 0–1 | 0.22 | 0.147 | 0 | 2 to −2 | −0.02 | 0.016 | 0 | 1 | 0–2 | 0.12 | 0.12 | 0 | −1–2 | 0.41 | 0.02 | 0 | 1 | −1–0 | −0.25 | 0.25 | 0 |
Physicochemical Properties | CYP2D6 | CYP3A4 | |||||||||||||||||||||||||
All CYP Inhibitors | CYP Inhibitors Fulfilling Efficiency Criteria (clogP ~1–3, LipE ≥ 5, LE ≥ 0.29) | All CYP Inhibitors | CYP Inhibitors Fulfilling Efficiency Criteria (clogP ~1–3, LipE ≥ 5, LE ≥ 0.29) | ||||||||||||||||||||||||
R | M | SEM | Mdn | P | R | M | SEM | Mdn | R | M | SEM | Mdn | P | R | M | SEM | Mdn | ||||||||||
MW | 108.1–917.1 | 400.2 | 2.72 | 386.4 | 585.3 | 324.4–459.6 | 381.5 | 16.73 | 369.95 | 108.1–677.7 | 466.29 | 2.32 | 455.6 | 677.7 | 284.3–604.1 | 482.5 | 21.59 | 493.99 | |||||||||
logP | −1.27–9.77 | 3.67 | 0.032 | 3.61 | 5.91 | 1.54–3.44 | 2.56 | 0.20 | 2.71 | −1.29–9.63 | 3.80 | 0.027 | 3.7 | 6.38 | 0.97–3.58 | 2.57 | 0.19 | 2.83 | |||||||||
logD (pH7) | −4.48–10.07 | 2.24 | 0.042 | 2.14 | 5.11 | −0.69–2.06 | 0.57 | 0.33 | 0.41 | −3.12–9.24 | 2.88 | 0.03 | 2.89 | 5.46 | −2.12–3.49 | 1.38 | 0.35 | 1.69 | |||||||||
logS | −8.48 to −0.34 | −4.45 | 0.028 | −4.37 | −2.83 | −3.91 to −3.12 | −3.56 | 0.097 | −3.6 | −8.98 to −1.06 | −4.90 | 0.02 | −4.82 | −3.04 | −5.36 to −2.74 | −4.19 | 0.19 | −4.57 | |||||||||
TPSA | 4.44–63.25 | 69.91 | 0.87 | 63.25 | 133.3 | 46.8–108.8 | 77.58 | 9.30 | 76.48 | 4.44–377.42 | 90.99 | 0.73 | 87.32 | 161.99 | 71.62–214.76 | 117.0 | 6.92 | 115.32 | |||||||||
Rotatable bonds | 0–20 | 5.82 | 0.07 | 5 | 11 | 2–9 | 6.38 | 1.13 | 6.5 | 0–21 | 6.78 | 0.07 | 6 | 14 | 2–19 | 7.29 | 0.89 | 7 | |||||||||
HBDs | 0–8 | 1.52 | 0.03 | 1 | 4 | 1–4 | 2.38 | 0.32 | 2 | 0–14 | 1.81 | 0.026 | 2 | 4 | 1–5 | 2.82 | 0.39 | 3 | |||||||||
HBAs | 0–17 | 5.18 | 0.059 | 5 | 9 | 4–8 | 5.5 | 0.5 | 5 | 0–27 | 6.74 | 0.049 | 7 | 11 | 4–13 | 8.18 | 0.49 | 9 | |||||||||
HBDs + HBAs | 0–22 | 6.69 | 0.078 | 6 | 12 | 5–11 | 7.88 | 0.72 | 7.5 | 1–38 | 8.54 | 0.065 | 8 | 14 | 6–15 | 11 | 0.67 | 10 | |||||||||
Vsa_acc | 0–2.58 | 21.60 | 0.41 | 19.25 | 49.76 | 2.5–48.09 | 18.76 | 5.16 | 13.57 | 0–149.2 | 29.45 | 0.31 | 29.58 | 0.31 | 13.57–65.6 | 33.6 | 4.88 | 27.1 | |||||||||
Vsa_don | 0–3.23 | 4.9 | 0.18 | 0 | 17.74 | 0–1.37 | 5.27 | 1.72 | 5.68 | 0–48.5 | 6.34 | 0.149 | 5.68 | 0.14 | 0–23.4 | 6.99 | 1.66 | 5.68 | |||||||||
Rings | 1–8 | 3.01 | 0.025 | 3 | 5 | 1–3 | 2 | 0.27 | 2 | 1–7 | 3.40 | 0.018 | 3 | 5 | 2–5 | 3.41 | 0.24 | 3 | |||||||||
Stereocenters | 0–24 | 1.32 | 0.035 | 1 | 3 | 1–6 | 2.5 | 0.71 | 1.5 | 0–18 | 1.37 | 0.036 | 1 | 4 | 0–3 | 1.58 | 0.24 | 2 | |||||||||
Fsp3 | 0–1 | 0.37 | 0.004 | 0.37 | 0.61 | 0.35–0.57 | 0.43 | 0.02 | 0.42 | 0–1 | 0.34 | 0.003 | 0.33 | 0.63 | 0.07–0.55 | 0.33 | 0.03 | 0.36 | |||||||||
Formal Charges (pH7) | −2–2 | 0.67 | 0.014 | 1 | 1 | 0–2 | 0.88 | 0.25 | 1 | −2–2 | 0.32 | 0.011 | 0 | 1 | −2–1 | 0.12 | 0.17 | 0 |
CYP Isoform | Description | Descriptors Selected | Mean Values (All Data) | Mean Values | ||
---|---|---|---|---|---|---|
Actives | Efficient | Inactives | ||||
CYP1A2 | Hydrogen bond acceptor and donor count | HBD_HBA | 5.82 | 5.65 | 6.33 | 7.83 |
Number of Stereocenters | sCenters | 0.33 | 0.30 | 0.11 | 0.80 | |
Hydrogen bond acceptors | HBA | 4.49 | 4.39 | 5 | 5.78 | |
Molecular weight in atomic mass units | Molecular Weight | 345.14 | 338.84 | 294.18 | 422.65 | |
CYP2C9 | Molecular weight in atomic mass units | Molecular Weight | 434.46 | 435.23 | 382.56 | 380.40 |
Hydrogen bond donors | HBD | 1.688 | 1.68 | 2 | 1.82 | |
Log of the distribution coefficient | logD | 3.09 | 3.12 | 1.41 | 2.68 | |
CYP2D6 | Total charge | T_charge | 0.67 | 0.69 | 0.875 | 0.29 |
Hydrogen bond donors | HBD | 1.52 | 1.509 | 2.38 | 1.66 | |
Hydrogen bond acceptors | HBA | 5.17 | 5.17 | 5.5 | 5.33 | |
Number of rings | Rings | 2.99 | 3.011 | 2 | 2.68 | |
Number of Stereocenters | sCenters | 1.32 | 1.33 | 2.5 | 1.15 | |
Molecular weight in atomic mass units | Molecular Weight | 399.98 | 400.19 | 381.49 | 395.50 | |
Log of the octanol/water partition coefficient | logP (o/w) | 3.68 | 3.69 | 2.56 | 3.61 | |
CYP3A4 | Molecular weight in atomic mass units | Molecular Weight | 467.96 | 470.86 | 482.47 | 395.78 |
Approximation to the sum of vdW surface areas (Å2) of pure hydrogen bond acceptors | vsa_acc | 29.45 | 29.65 | 33.61 | 24.25 |
Training Set | 10-Fold Cross Validation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CYP Subtype | Accuracy % | Sensitivity % | Specificity % | MCC | Kappa Statistic | AUC | Accuracy % | Sensitivity % | Specificity % | MCC | Kappa Statistic | AUC |
CYP1A2 | 94.43 | 94.6 | 87.50 | 0.50 | 0.43 | 0.68 | 93.11 | 94.09 | 61.11 | 0.35 | 0.315 | 0.64 |
CYP2C9 | 96.01 | 95.98 | 100.0 | 0.37 | 0.25 | 0.59 | 95.40 | 95.81 | 53.85 | 0.232 | 0.1733 | 0.502 |
CYP2D6 | 96.49 | 96.63 | 86.36 | 0.46 | 0.39 | 0.78 | 95.07 | 95.77 | 29.41 | 0.124 | 0.10 | 0.589 |
CYP3A4 | 95.81 | 96.69 | 64 | 0.299 | 0.233 | 0.579 | 96.18 | 96.48 | 52.63 | 0.211 | 0.15 | 0.543 |
Compound Type | Fragment-Like | Drug-Like | CYP1A2 Inhibitors | CYP2C9 Inhibitors | CYP2C19 Inhibitors | CYP2D6 Inhibitors | CYP3A4 Inhibitors | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rule | Rule of Three | Rule of Five | Rule of Five | Rule of five | Rule of Five | Rule of Five | Rule of Five | |||||
Active | Efficient | Active | Efficient | Active | Efficient | Active | Efficient | Active | Efficient | |||
Thresholds | Average Value | Average Value | Average Value | Average Value | Average Value | Average Value | Average Value | Average Value | Average Value | Average Value | ||
Molecular Weight | <300 | <500 | 340 | 294 | 438 | 382 | 407 | 381 | 403 | 382 | 470.8 | 482 |
clogP | ≤3 | ≤5 | 4.05 | 2.16 | 4.2 | 1.72 | 4.23 | 1.56 | 3.91 | 2.36 | 3.97 | 2.28 |
H-bond donors | ≤3 | ≤5 | 1 | 1 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 3 |
H-bond acceptors | ≤3 | ≤10 | 3 | 3 | 4 | 5 | 4 | 4 | 4 | 4 | 5 | 5 |
TPSA | ≤60Å2 | ≤140Å2 | 56.25 | 67.61 | 81.3 | 93.75 | 71.9 | 98.81 | 62.58 | 71.67 | 83.46 | 105 |
Rotatable bonds | ≤3 | ≤10 | 5 | 2 | 7 | 6 | 6 | 6 | 7 | 7 | 8 | 8 |
pIC50 | 4.4 | 8 | 5.53 | 7.54 | 5.39 | 7.3 | 5.27 | 7.09 | 5.34 | 7.83 | 5.63 | 8.29 |
LipE | 2.18 | ≤5 | 1.48 | 5.39 | 1.2 | 5.56 | 1.03 | 5.53 | 1.63 | 5.48 | 1.65 | 6.02 |
Heavy atoms | ~15 | 38 | 24 | 19 | 40 | 27 | 28.7 | 27 | 29 | 27.63 | 33 | 34 |
LE | 0.38 | 0.29 | 0.35 | 0.52 | 0.27 | 0.38 | 0.28 | 0.37 | 0.29 | 0.41 | 0.25 | 0.36 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiani, Y.S.; Jabeen, I. Exploring the Chemical Space of Cytochrome P450 Inhibitors Using Integrated Physicochemical Parameters, Drug Efficiency Metrics and Decision Tree Models. Computation 2019, 7, 26. https://doi.org/10.3390/computation7020026
Kiani YS, Jabeen I. Exploring the Chemical Space of Cytochrome P450 Inhibitors Using Integrated Physicochemical Parameters, Drug Efficiency Metrics and Decision Tree Models. Computation. 2019; 7(2):26. https://doi.org/10.3390/computation7020026
Chicago/Turabian StyleKiani, Yusra Sajid, and Ishrat Jabeen. 2019. "Exploring the Chemical Space of Cytochrome P450 Inhibitors Using Integrated Physicochemical Parameters, Drug Efficiency Metrics and Decision Tree Models" Computation 7, no. 2: 26. https://doi.org/10.3390/computation7020026
APA StyleKiani, Y. S., & Jabeen, I. (2019). Exploring the Chemical Space of Cytochrome P450 Inhibitors Using Integrated Physicochemical Parameters, Drug Efficiency Metrics and Decision Tree Models. Computation, 7(2), 26. https://doi.org/10.3390/computation7020026