Computational Analysis of Tandem Micro-Vortex Generators for Supersonic Boundary Layer Flow Control
Abstract
1. Introduction
2. Case Setup and Numerical Methods
2.1. Case Setup
2.2. Numerical Methods
3. Numerical Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DNS | direct numerical simulation |
LES | large eddy simulation |
MVG | micro-vortex generator |
NPLS | nano-tracer planar laser scattering |
PIV | particle image velocimetry |
RANS | Reynolds-averaged Navier–Stokes |
SWBLI | shock-wave boundary-layer interaction |
TVD | total variation diminishing |
WENO | weighted essentially non-oscillatory |
Nomenclature | |
density of the fluids | |
internal shear stress | |
internal energy per unit mass | |
pressure | |
temperature | |
thermal conductivity | |
dynamic viscosity | |
gas constant | |
ratio of specific heats | |
Mach number | |
Reynolds number based on momentum thickness | |
Prandtl number | |
MVG height | |
inflow boundary layer nominal thickness | |
inflow boundary layer displacement thickness | |
spanwise, normal, and streamwise coordinate axes | |
spanwise, normal, and streamwise velocity | |
Cartesian frames | |
curvilinear frames | |
Jacobian | |
Subscript | |
viscous | |
free stream |
References
- Wu, H.; Huang, W.; Yan, L.; Du, Z. Control Mechanism of Micro Vortex Generator and Secondary Recirculation Jet Combination in the Shock Wave/Boundary Layer Interaction. Acta Astronaut. 2022, 200, 56–76. [Google Scholar] [CrossRef]
- Saleem, M.; Karnam, A.; Rodriguez, O.; Liu, J.; Gutmark, E. Flow and Acoustic Fields Investigation of Noise Reduction by Micro Vortex Generators in Supersonic Nozzles. Phys. Fluids 2023, 35, 106111. [Google Scholar] [CrossRef]
- Liu, J.; Khine, Y.Y.; Saleem, M.; Lopez Rodriguez, O.; Gutmark, E. Supersonic Jet Noise Reduction Using Micro Vortex Generators. In Proceedings of the AIAA AVIATION 2021 FORUM, Virtual, 2–6 August 2021; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar]
- Wu, H.; Huang, W.; Zhong, X.-Y.; Du, Z.-B. Study of the Streamwise Location of a Micro Vortex Generator for a Separation-Control Mechanism in Supersonic Flow. Phys. Fluids 2022, 34, 116115. [Google Scholar] [CrossRef]
- Sajeev, S.; Pal Singh Sandhu, J.; Ghosh, S.; Edwards, J.R. Effectiveness of Micro-Vortex Generators in Tandem in High-Speed Flows. In Proceedings of the AIAA AVIATION 2020 FORUM, Virtual, 15–19 June 2020; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020. [Google Scholar]
- Lu, F.K.; Li, Q.; Liu, C. Microvortex Generators in High-Speed Flow. Prog. Aerosp. Sci. 2012, 53, 30–45. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, Q.; Xiang, X.; Xu, J. An Improved Micro-Vortex Generator in Supersonic Flows. Aerosp. Sci. Technol. 2015, 47, 210–215. [Google Scholar] [CrossRef]
- Anderson, B.; Tinapple, J.; Surber, L. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation. In Proceedings of the 3rd AIAA Flow Control Conference, San Francisco, CA, USA, 5–8 June 2006; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2006. [Google Scholar]
- Babinsky, H.; Li, Y.; Pitt Ford, C.W. Microramp Control of Supersonic Oblique Shock-Wave/Boundary-Layer Interactions. AIAA J. 2009, 47, 668–675. [Google Scholar] [CrossRef]
- Sun, Z.; Scarano, F.; van Oudheusden, B.W.; Schrijer, F.F.J.; Yan, Y.; Liu, C. Numerical and Experimental Investigations of the Supersonic Microramp Wake. AIAA J. 2014, 52, 1518–1527. [Google Scholar] [CrossRef]
- Wang, B.; Liu, W.; Zhao, Y.; Fan, X.; Wang, C. Experimental Investigation of the Micro-Ramp Based Shock Wave and Turbulent Boundary Layer Interaction Control. Phys. Fluids 2012, 24, 055110. [Google Scholar] [CrossRef]
- Rizzetta, D.P.; Visbal, M.R.; Gaitonde, D.V. Large-Eddy Simulation of Supersonic Compression-Ramp Flow by High-Order Method. AIAA J. 2001, 39, 2283–2292. [Google Scholar] [CrossRef]
- Kaenel, R.V.; Kleiser, L.; Adams, N.A.; Vos, J.B. Large-Eddy Simulation of Shock-Turbulence Interaction. AIAA J. 2004, 42, 2516–2528. [Google Scholar] [CrossRef]
- Li, Q.; Yan, Y.; Wang, X.; Liu, C. The Interaction between Vortex Rings and Oblique Shocks by the MVG Controlled Ramp Flow at M = 2.5. In Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2011. [Google Scholar]
- Xue, D.; Chen, Z.; Jiang, X.; Fan, B. Numerical Investigations on the Wake Structures of Micro-Ramp and Micro-Vanes. Fluid Dyn. Res. 2014, 46, 015505. [Google Scholar] [CrossRef]
- Wang, B.; Liu, W.D.; Sun, M.B.; Zhao, Y.X. Fluid Redistribution in the Turbulent Boundary Layer Under the Microramp Control. AIAA J. 2015, 53, 3777–3787. [Google Scholar] [CrossRef]
- Nilavarasan, T.; Joshi, G.N.; Misra, A.; Manisankar, C.; Verma, S.B. Control of Flow Separation over an Axisymmetric Flared Body Using Ramped Vanes. Eur. J. Mech. B/Fluids 2022, 95, 160–177. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, Q.; Shao, X. Tip Vortex Cavitation Control by the Micro Vortex Generator. Phys. Fluids 2025, 37, 023328. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, L.; Li, Q.; Liu, C. Numerical Study of Micro-Ramp Vortex Generator for Supersonic Ramp Flow Control at Mach 2.5. Shock Waves 2017, 27, 79–96. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, Y.; Chen, C.; Wu, Q.; Kwembe, T.A.; Wu, R. Modal Analysis on MVG Controlled Supersonic Flow at Different Mach Numbers. Processes 2022, 10, 1456. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, Y.; Chen, C.; Cotton, H.A.; Serrano, A. Numerical Study on the Ring-like Vortex Structure Generated by MVG in High-Speed Flows with Different Mach Numbers. Jpn. J. Indust. Appl. Math. 2022, 39, 3–18. [Google Scholar] [CrossRef]
- Lu, F.; Pierce, A.; Shih, Y. Experimental Study of near Wake of Micro Vortex Generators in Supersonic Flow. In Proceedings of the 40th Fluid Dynamics Conference and Exhibit, Chicago, IL, USA, 28 June–1 July 2010; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010. [Google Scholar]
- Zhu, Y.; Yi, S.; Ding, H.; Nie, W.; Zhang, Z. Structures and Aero-Optical Effects of Supersonic Flow over a Backward Facing Step with Vortex Generators. Eur. J. Mech. B/Fluids 2019, 74, 302–311. [Google Scholar] [CrossRef]
- Giepman, R.H.M.; Srivastava, A.; Schrijer, F.F.J.; Van Oudheusden, B.W. Mach and Reynolds Number Effects on the Wake Properties of Microramps. AIAA J. 2016, 54, 3481–3494. [Google Scholar] [CrossRef]
- Sun, Z.; Schrijer, F.F.J.; Scarano, F.; van Oudheusden, B.W. The Three-Dimensional Flow Organization Past a Micro-Ramp in a Supersonic Boundary Layer. Phys. Fluids 2012, 24, 055105. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, C. Comparison of Liutex and Other Vortex Identification Methods Based on Vortex Models. In Proceedings of the Vortex Workshop; Wang, Y., Liu, C., Li, Y., Eds.; Springer Proceedings in Physics; Springer Nature: Singapore, 2024; Volume 309, pp. 20–33. ISBN 978-981-97-8607-7. [Google Scholar]
Case 0 | Case 1 | Case 2 | Case 3 | |
---|---|---|---|---|
- | ||||
860 | 860 | 930 | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Yang, Y.; Yan, Y. Computational Analysis of Tandem Micro-Vortex Generators for Supersonic Boundary Layer Flow Control. Computation 2025, 13, 101. https://doi.org/10.3390/computation13040101
Chen C, Yang Y, Yan Y. Computational Analysis of Tandem Micro-Vortex Generators for Supersonic Boundary Layer Flow Control. Computation. 2025; 13(4):101. https://doi.org/10.3390/computation13040101
Chicago/Turabian StyleChen, Caixia, Yong Yang, and Yonghua Yan. 2025. "Computational Analysis of Tandem Micro-Vortex Generators for Supersonic Boundary Layer Flow Control" Computation 13, no. 4: 101. https://doi.org/10.3390/computation13040101
APA StyleChen, C., Yang, Y., & Yan, Y. (2025). Computational Analysis of Tandem Micro-Vortex Generators for Supersonic Boundary Layer Flow Control. Computation, 13(4), 101. https://doi.org/10.3390/computation13040101