Numerical Modeling and Simulation of Vehicular Crashes into Three-Bar Metal Bridge Rail
Abstract
:1. Introduction
2. FE Modeling of TMBR
2.1. Modeling of Metal Rails
2.2. Modeling of Concrete Parapet and Terminals
- MAT_PIECEWISE_LINEAR_PLASTICITY (MAT_024): for all aluminum components (rails, posts, clamping bars, extension bars, and brackets).
- MAT_CSCM (MAT_159): for the concrete parapet and terminals.
- MAT_PLASTIC_KINEMATIC (MAT_003): for steel bolts and reinforcement bars.
- MAT_LINEAR_ELASTIC_DISCRETE_BEAM (MAT_066): for discrete elements.
- MAT_RIGID (MAT_020): for nuts and washers.
- MAT_NULL (MAT_009): for contact purposes.
- MAT_ELASTIC (MAT_001): for the road surface.
3. FE Modeling of Test Vehicles
3.1. FE Vehicle Models
- MAT_PIECEWISE_LINEAR_PLASTICITY (MAT_024): for all steel components.
- MAT_RIGID (MAT_020): for accelerometers and non-deformable materials.
- MAT_ELASTIC (MAT_001): for rubber components.
- MAT_LINEAR_ELASTIC_DISCRETE_BEAM (MAT_066): for shock absorbers with viscous damping effects.
- MAT_LOW_DENSITY_VISCOUS_FOAM (MAT_073): for the radiator.
- MAT_SPOTWELD (MAT_100): for sheet metal connections.
- MAT_NULL (MAT_009): for contact definitions.
- MAT_SPRING_NONLINEAR_ELASTIC (MAT_S04): for the suspensions.
3.2. Model Validation
4. Evaluation of TMBR
4.1. Simulation Setup and Evaluation Criteria
- Structural Adequacy by MASH Criterion A. The TMBR was designed to ensure that vehicles were contained and redirected without overriding, underriding, or penetrating the bridge rail.
- Occupant Risk by MASH Criteria D, F, H, I: These criteria define the assessed risk to occupants during a crash.
- Criterion D: No debris from the TMBR should enter the passenger compartment during the crash;
- Criterion F: Maximum pitch and roll angles of the vehicle must not exceed 75°; and
- Criteria H and I: Two risk factors for occupant safety were considered: occupant impact velocity (OIV) and occupant ride-down acceleration (ORA). The acceptable and preferred limits for OIV are 12.2 m/s and 9.1 m/s, respectively. The acceptable and preferred limits of ORA are 20.5 G and 15.0 G, respectively, where G is the acceleration of gravity.
- Post-Impact Trajectory by MASH Criterion N. This criterion, also known as the exit box criterion, assesses the risk of the vehicle crashing into other vehicles after being redirected back to the travel lane. The exit box is a rectangular box with its long side along the traffic side of the barrier (Figure 14). The top-left corner of the exit box was the final point of contact of the rear wheel with the initial, undeformed barrier face. The dimensions of the exit boxes for the two test vehicles are listed in Table 4.
- The width of the exit box, A, was calculated using the width and length of the vehicle (VW and VL) by (7.2 + VW + 0.16VL);
- the length of the exit box, B, had a specified value for each type of vehicle; and
- all four wheels of the impact vehicle are required to remain inside the exit box to ensure a small exit angle for the vehicle to safely return to the roadway.
4.2. Vehicular Crashes According to MASH TL-2 Requirements
4.3. Vehicular Crashes According to MASH TL-3 Requirements
4.4. Vehicular Crash into TMBR behind a Sidewalk
5. Major Research Findings
- Under MASH TL-2 test conditions, the TMBR was shown to pass all the safety requirements on structural adequacy (MASH Criterion A), occupant risk (MASH Criteria D, F, H, and I), and post-impact trajectory (MASH Criterion N). The damage to the rails was acceptable and no debris entered the occupant compartments of the vehicles.
- For MASH TL-3 test conditions, the TMBR met all safety requirements subject to the impact of the 2014 Chevy Silverado. However, the TMBR failed to pass the safety requirements of MASH Criteria H and N under the impact of the 2010 Toyota Yaris. Specifically, the longitudinal OIV value did not satisfy the MASH limit requirement. Moreover, the vehicle was bounced back and unable to be redirected, indicating failure of MASH Criterion N.
- Under in-service conditions (i.e., the TMBR was installed behind a 1.52 m wide sidewalk), the impact severity on the TMBR was reduced in the case of the 2010 Toyota Yaris according to MASH TL-3 requirements. The TMBR with the sidewalk passed all safety requirements except for the longitudinal OIV value that exceeded the MASH limit by 3.93%. This small percentage could be considered well within the error margins and would not cause serious safety concerns.
- The numerical models and modeling techniques adopted in this study were shown to be effective through model valuation using full-scale physical crash test data. Although the makes and/or years of the vehicles in the physical tests and FE simulations were different, the numerical simulation results and test data generally agreed well in overall vehicular responses. More full-scale crash tests, particularly those with the same or similar vehicles as the FE models, would be extremely useful and important to further fine-tune the FE models and improve their accuracy and fidelity.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- NCDOT Structures Bridge Sites Images. Available online: https://connect.ncdot.gov/resources/Structures/Structures%20Bridge%20Sites%20Images/14_Site15A_5488.JPG (accessed on 15 July 2024).
- Ross, H.E., Jr.; Sicking, D.L.; Zimmer, R.A.; Michie, J.D. Recommended Procedures for the Safety Performance Evaluation of Highway Features; NCHRP Report 350; Transportation Research Board, National Research Council: Washington, DC, USA, 1993. [Google Scholar]
- AASHTO. Manual for Assessing Safety Hardware (MASH), 2nd ed.; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2016. [Google Scholar]
- Nordlin, E.F.; Field, R.N.; Hackett, R.P. Dynamic Full-Scale Impact Tests of Bridge Barrier Rails. In Proceedings of the 43rd Transportation Research Board Annual Meeting, Washington, DC, USA, 1965; Available online: https://onlinepubs.trb.org/Onlinepubs/hrr/1965/83/83-007.pdf (accessed on 13 August 2024).
- Nordlin, E.F.; Hackett, R.P.; Folsom, J.J. Dynamic tests of California Type 9 bridge barrier rail and Type 8 bridge approach guardrail. In Proceedings of the 49th Transportation Research Board Annual Meeting, Washington, DC, USA, 1970; Available online: https://onlinepubs.trb.org/Onlinepubs/hrr/1970/302/302-001.pdf (accessed on 13 August 2024).
- Jewell, J.; Stoughton, R.L.; Glauz, D. Vehicle crash tests of Type 115 barrier rail systems for use on secondary highways. Transp. Res. Rec. 1993, 1419, 86–94. [Google Scholar]
- Mak, K.K.; Bligh, R.P.; Pope, D.H. Wyoming tube-type bridge rail and box-beam guardrail transition. Transp. Res. Rec. 1990, 1258, 61–70. [Google Scholar]
- Rails, A.B.; Bullard Jr, D.L.; Williams, W.F.; Menges, W.L.; Haug, R.R. Design and Evaluation of the TxDOT F411 and T77 Aesthetic Bridge Rails; FHWA/TX-03/4288-1; Texas Department of Transportation: Austin, TX, USA, 2002. [Google Scholar]
- Williams, W. New aesthetic Type T-1F bridge rail from the Texas Department of Transportation: Design and Test Level 3 crash testing. Transp. Res. Rec. 2008, 2050, 39–46. [Google Scholar] [CrossRef]
- Buth, C.E.; Williams, W.F.; Bligh, R.P.; Menges, W.L.; Haug, R.R. Performance of the TxDOT T202 (MOD) Bridge Rail Reinforced with Fiber Reinforced Polymer Bars; FHWA/TX-03/0-4138-3; Texas Transportation Institute (TTI): Austin, TX, USA, 2003. [Google Scholar]
- Bligh, R.P.; Mak, K.K.; Hirsch, T.J. Evaluation of Tennessee Bridge Rail Designs; RF 7199; Texas Transportation Institute (TTI): Austin, TX, USA, 1994. [Google Scholar]
- Buth, E.C.; Hirsch, T.J.; Menges, W.L. Testing of New Bridge Rail and Transition Designs; FHWA-RD-93-058; Texas Transportation Institute (TTI): Austin, TX, USA, 1993. [Google Scholar]
- Alberson, D.C.; Williams, W.F.; Menges, W.L.; Haug, R.R. Testing and Evaluation of the Florida Jersey Safety Shaped Bridge Rail; FHWA/TX-04/9-8132-1; Texas Transportation Institute: Austin, TX, USA, 2004. [Google Scholar]
- Whitesel, D.; Jewell, J.R. Development and Crash Testing of an Aesthetic, See-Through Bridge Rail, Type 90; California Department of Transportation: Sacramento, CA, USA, 2008. [Google Scholar]
- Williams, W.F.; Bligh, R.P.; Menges, W.L. MASH Test 3-11 of the TxDOT Single Slope Bridge Rail (Type SSTR) on Pan-Formed Bridge Deck; FHWA/TX-11/9-1002-3; Texas Transportation Institute (TTI): Austin, TX, USA, 2010. [Google Scholar]
- Thiele, J.C.; Sicking, D.L.; Faller, R.K.; Bielenberg, R.W.; Lechtenberg, K.A.; Reid, J.D.; Rosenbaugh, S.K. Development of a Low-Cost, Energy-Absorbing Bridge Rail; TRP-03-226-10; Midwest Roadside Safety Facility (MwRSF): Lincoln, NE, USA, 2010. [Google Scholar]
- Williams, W.F.; Holt, J. Design and Full-Scale Testing of Texas Department of Transportation Type T131RC Bridge Rail; FHWA/TX-12/9-1002-12-1; Texas Department of Transportation: Austin, TX, USA, 2013. [Google Scholar]
- Whitesel, D.; Jewell, J.; Meline, R. Compliance Crash Testing of the Type 732sw Bridge Rail; FHWA/CA15-2181; California Department of Transportation: Sacramento, CA, USA, 2016. [Google Scholar]
- Williams, W.F.; Bligh, R.P.; Odell, W.; Smith, A.; Holt, J. Design and full-scale testing of low-cost Texas Department of Transportation Type T631 bridge rail for MASH Test Level 2 and 3 Applications. Transp. Res. Rec. 2015, 2521, 117–127. [Google Scholar] [CrossRef]
- Williams, W.F.; Bligh, R.P.; Menges, W.L.; Kuhn, D.L. Crash Test and Evaluation of the TxDOT T224 Bridge Rail; FHWA/TX-15/9-1002-15-5; Texas Transportation Institute (TTI): Austin, TX, USA, 2018. [Google Scholar]
- Polivka, K.A.; Faller, R.K.; Keller, E.A.; Sicking, D.L.; Rohde, J.R.; Holloway, J.C. Design and Evaluation of the TL-4 Minnesota Combination Traffic/Bicycle Bridge Rail; SPR-3(017); Midwest Roadside Safety Facility (MwRSF): Lincoln, NE, USA, 1998. [Google Scholar]
- Faller, R.K.; Ritter, M.A.; Rosson, B.T.; Fowler, M.D.; Duwadi, S.R. Two test level 4 bridge railing and transition systems for transverse timber deck bridges. Transp. Res. Rec. 2000, 1696, 334–351. [Google Scholar] [CrossRef]
- Sheikh, N.M.; Bligh, R.P.; Menges, W.L. Determination of Minimum Height and Lateral Design Load for MASH Test Level 4 Bridge Rails; FHWA/TX-12/9-1002-5; Texas Transportation Institute (TTI): Austin, TX, USA, 2011. [Google Scholar]
- Rasmussen, J.D.; Rosenbaugh, S.K.; Faller, R.K.; Bielenberg, R.W.; Steelman, J.S.; Pena, O.; Mauricio, P. Development of a Test Level 4, side-mounted, steel tube bridge rail. Transp. Res. Rec. 2020, 2674, 525–537. [Google Scholar] [CrossRef]
- Pena, O.; Faller, R.K.; Rasmussen, J.D.; Steelman, J.S.; Rosenbaugh, S.K.; Bielenberg, R.W.; Mauricio, P.; Duren, J.T. Development of a MASH Test Level 4 Steel, Side-Mounted, Beam-And-Post, Bridge Rail; TRP-03-410-20; Midwest Roadside Safety Facility (MwRSF): Lincoln, NE, USA, 2020. [Google Scholar]
- Rosenbaugh, S.K.; Rasmussen, J.D.; Faller, R.K. Development and testing of a Test Level 4 concrete bridge rail and deck overhang. Transp. Res. Rec. 2020, 2674, 455–465. [Google Scholar] [CrossRef]
- Rosenbaugh, S.K.; Faller, R.K.; Dixon, J.; Loken, A.; Rasmussen, J.D.; Flores, J. Development and Testing of an Optimized MASH TL-4 Bridge Rail; TRP-03-415-21; Midwest Roadside Safety Facility (MwRSF): Lincoln, NE, USA, 2021. [Google Scholar]
- Wekezer, J.W.; Oskard, M.S.; Logan, R.W.; Zywicz, E. Vehicle impact simulation. J. Transp. Eng. 1993, 119, 598–617. [Google Scholar] [CrossRef]
- Mendis, K.; Mani, A.; Shyu, S.C. Finite Element Crash Models of Motor Vehicles; FHWA-RD-016; Federal Highway Administration: Washington, DC, USA, 1995. [Google Scholar]
- Cofie, E. Finite Element Model of a Small Automobile Impacting a Rigid Pole; FHWA-RD-94-151; Federal Highway Administration: Washington, DC, USA, 1995. [Google Scholar]
- Zaouk, A.K.; Bedewi, N.E.; Kan, C.D.; Marzougui, D. Development and evaluation of a C-1500 pick-up truck model for roadside hardware impact simulation. In Proceedings of FHWA Vehicle Crash Analysis Conference, Langley, VA, USA, 13 December 1997. FHWA-RD-96-212. [Google Scholar]
- Mohan, P.; Marzougui, D.; Arispe, E.; Story, C. Component and Full-Scale Tests of the 2007 Chevrolet Silverado Suspension System; NCAC-2009-R-004; National Crash Analysis Center: Washington, DC, USA, 2009. [Google Scholar]
- Marzougui, D.; Samaha, R.R.; Cui, C.; Kan, C.D.; Opiela, K.S. Extended Validation of the Finite Element Model for the 2010 Toyota Yaris Passenger Sedan (MASH 1100kg Vehicle); NCAC-2012-W-005; National Crash Analysis Center: Washington, DC, USA, 2012. [Google Scholar]
- Marzougui, D.; Kan, C.D.; Samaha, R.R.; Cui, C.; Nix, L. Extended Validation of the Finite Element Model for the 2007 Chevrolet Silverado Pick-Up Truck (MASH 2270kg Vehicle); National Crash Analysis Center: Washington, DC, USA, 2012; NCAC 2012-W-003. [Google Scholar]
- CCSA. 2014 Chevrolet Silverado 1500 Detailed Finite Element Model; Center for Collision Safety and Analysis, George Mason University: Fairfax, VA, USA, 2018. [Google Scholar] [CrossRef]
- Stolle, C.; Reid, J.D. Development of a wire rope model for cable guardrail simulation. Int. J. Crashworthiness 2011, 16, 331–341. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, H.; Li, N.; Weggel, D.C.; Wen, G. An efficient FE model of slender members for crash analysis of cable barriers. Eng. Struct. 2013, 52, 240–256. [Google Scholar] [CrossRef]
- Fang, H.; Wang, Q.; Weggel, D.C. Crash analysis and evaluation of cable median barriers on sloped medians using an efficient finite element model. Adv. Eng. Softw. 2015, 82, 1–13. [Google Scholar] [CrossRef]
- Bruski, D.; Burzyński, S.; Chróścielewski, J.; Jamroz, K.; Pachocki, Ł.; Witkowski, W.; Wilde, K. Experimental and numerical analysis of the modified TB32 crash tests of the cable barrier system. Eng. Fail. Anal. 2019, 104, 227–246. [Google Scholar] [CrossRef]
- Wilde, K.; Bruski, D.; Budzyński, M.; Burzyński, S.; Chróścielewski, J.; Jamroz, K.; Pachocki, Ł.; Witkowski, W. Numerical analysis of TB32 crash tests for 4-cable guardrail barrier system installed on the horizontal convex curves of road. Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 65–81. [Google Scholar] [CrossRef]
- Bruski, D.; Burzyński, S.; Witkowski, W. Analysis of passenger car crash with a cable barrier installed with anti-glare screens on a horizontal convex road curve with 400 m radius. Int. J. Impact Eng. 2023, 173, 104486. [Google Scholar] [CrossRef]
- Wang, Q.; Palta, E.; Fang, H. Numerical modeling and simulation of cable barriers under vehicular impacts on a sloped median. Int. J. Prot. Struct. 2024. [Google Scholar] [CrossRef]
- Borovinšek, M.; Vasenjak, M.; Ulbin, M.; Ren, Z. Simulation of crash tests for high containment levels of road safety barriers. Eng. Fail. Anal. 2007, 14, 1711–1718. [Google Scholar] [CrossRef]
- Li, N.; Fang, H.; Zhang, C.; Gutowski, M.; Palta, E.; Wang, Q. A numerical study of occupant responses and injuries in vehicular crashes into roadside barriers based on finite element simulations. Adv. Eng. Softw. 2015, 90, 22–40. [Google Scholar] [CrossRef]
- Teng, T.-L.; Liang, C.-C.; Tran, T.-T. Effect of various W-beam guardrail post spacings and rail heights on safety performance. Adv. Mech. Eng. 2015, 7, 1–16. [Google Scholar] [CrossRef]
- Gutowski, M.; Palta, E.; Fang, H. Crash analysis and evaluation of vehicular impacts on W-beam guardrails placed on sloped medians using finite element simulations. Adv. Eng. Softw. 2017, 112, 88–100. [Google Scholar] [CrossRef]
- Gutowski, M.; Palta, E.; Fang, H. Crash analysis and evaluation of vehicular impacts on W-beam guardrails placed behind curbs using finite element simulations. Adv. Eng. Softw. 2017, 114, 85–97. [Google Scholar] [CrossRef]
- Yin, H.; Xiao, Y.; Wen, G.; Fang, H. Design optimization of a new w-beam guardrail for enhanced highway safety performance. Adv. Eng. Softw. 2017, 112, 154–164. [Google Scholar] [CrossRef]
- Soltani, M.; Topa, A.; Karim, M.R.; Ramli Sulong, N.H. Crashworthiness of G4(2W) guardrail system: A finite element parametric study. Int. J. Crashworthiness 2017, 22, 169–189. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H.; Fatoki, J.; Gutowski, M.; Wang, Q. A numerical study of strong-post double-faced W-beam and Thrie-beam guardrails under impacts of vehicles of multiple size classes. Accid. Anal. Prev. 2021, 159, 106286. [Google Scholar] [CrossRef] [PubMed]
- Wolny, R.; Bruski, D.; Budzyński, M.; Pachocki, L.; Wilde, K. Influence of a lighting column in the working width of a W-beam barrier on TB51 crash test. Materials 2022, 15, 4926. [Google Scholar] [CrossRef] [PubMed]
- Bruski, D.; Pachocki, L.; Sciegaj, A.; Witkowski, W. Speed estimation of a car at impact with a W-beam guardrail using numerical simulations and machine learning. Adv. Eng. Softw. 2023, 184, 103502. [Google Scholar] [CrossRef]
- Yin, H.; Fang, H.; Wang, Q.; Wen, G. Design optimization of a MASH TL-3 concrete barrier using RBF based metamodels and nonlinear finite element simulations. Eng. Struct. 2016, 114, 122–134. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, H.; Yin, H. Reliability analysis of concrete barriers under vehicular crashes using augmented RBFs. Struct. Multidiscip. Optim. 2020, 61, 1215–1228. [Google Scholar] [CrossRef]
- Pachocki, Ł.; Bruski, D. Modeling, simulation, and validation of a TB41 crash test of the H2/W5/B concrete vehicle restraint system. Arch. Civ. Mech. Eng. 2020, 20, 62. [Google Scholar] [CrossRef]
- Li, Z.; Gao, X.; Tang, Z. Safety performance of a precast concrete barrier: Numerical study. CMES-Comput. Model. Eng. Sci. 2020, 123, 1105–1129. [Google Scholar] [CrossRef]
- Pachocki, L.; Daszkiewicz, K.; Łuczkiewicz, P.; Witkowski, W. Biomechanics of lumbar spine injury in road barrier collision–finite element study. Front. Bioeng. Biotechnol. 2021, 9, 760498. [Google Scholar] [CrossRef]
- Budzynski, M.; Jamroz, K.; Jelinski, L.; Bruski, D.; Pachocki, L.; Baginski, G. Assessing roadside hybrid energy absorbers using the example of SafeEnd. Materials 2022, 15, 1712. [Google Scholar] [CrossRef]
- Büyük, M.; Atahan, A.O.; Kurucuoglu, K. Impact Performance Evaluation of a crash cushion design using finite element simulation and full-scale crash testing. Safety 2018, 4, 48. [Google Scholar] [CrossRef]
- Atahan, A.O.; Erdem, M.M. Evaluation of 12 m long turned down guardrail end terminal using full-scale crash testing and simulation. Lat. Am. J. Solids Struct. 2016, 13, 3107–3125. [Google Scholar] [CrossRef]
- Meng, Y.; Hu, W.; Untaroiu, C. An examination of the performance of damaged energy-absorbing end terminals. Accid. Anal. Prev. 2020, 147, 105789. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Li, Z.; Fatoki, O.; Palta, E. Risk Assessment of Roadside Utility Structures under Vehicular Impacts; NCDOT Research Report FHWA/NC/2018-24; North Carolina Department of Transportation: Raleigh, NC, USA, 2020. [Google Scholar]
- Wekezer, J.W.; Kreja, I.; Issa, M. Retrofit analysis of Florida beam-and-post reinforced concrete bridge barriers. Eng. Transp. 2002, 50, 187–211. [Google Scholar]
- Ray, M.H.; Oldani, E.; Plaxico, C.A. Design and analysis of an aluminum F-shape bridge railing. Int. J. Crashworthiness 2004, 9, 349–363. [Google Scholar] [CrossRef]
- Atahan, A.O.; Cansiz, O.F. Impact analysis of a vertical flared back bridge rail-to-guardrail transition structure using simulation. Finite Elem. Anal. Des. 2005, 41, 371–396. [Google Scholar] [CrossRef]
- Atahan, A.O. Crashworthiness analysis of a bridge rail-to-guardrail transition. Int. J. Crashworthiness 2016, 21, 423–434. [Google Scholar] [CrossRef]
- Atahan, A.O. Development of a heavy containment level bridge rail for Istanbul. Lat. Am. J. Solids Struct. 2018, 15. [Google Scholar] [CrossRef]
- ERF. EN1317; European Road Restraint Systems, European Union Road Federation: Brussels, Belgium, 1998; Available online: https://erf.be/en-1317/ (accessed on 13 August 2024).
- Bocchieri, R.; Kirkpatrick, S. Evaluation of bridge rail designs using probabilistic finite element crash simulations. In Proceedings of the International Crashworthiness Conference (ICrash2006), Athens, Greece, 4–7 July 2006. [Google Scholar]
- Abu-Odeh, A. Modeling and simulation of bogie impacts on concrete bridge rails using LS-DYNA. In Proceedings of the 10th International LS-DYNA Users Conference, Detroit, MI, USA, 8–10 June 2008. [Google Scholar]
- Thanh, L.; Itoh, Y. Performance of curved steel bridge railings subjected to truck collisions. Eng. Struct. 2013, 54, 34–46. [Google Scholar] [CrossRef]
- Fang, H.; Li, Z.; Fatoki, O.; Stolle, C. Evaluation of Four Bridge Rail Systems for Compliance with the 2016 Edition of Manual for Assessing Safety Hardware (MASH); NCDOT Research Report FHWA/NC/2019-23; North Carolina Department of Transportation: Raleigh, NC, USA, 2022. [Google Scholar]
- Murray, Y.D. User’s Manual for LS-DYNA Concrete Material Model 159; Report No. FHWA-HRT-05-062; Federal Highway Administration: Washington, DC, USA, 2007. [Google Scholar]
- Murray, Y.D.; Abu-Odeh, A.; Bligh, R. Evaluation of Concrete Material Model 159; Report No. FHWA-HRT-05-063; Federal Highway Administration: Washington, DC, USA, 2006. [Google Scholar]
- NHTSA. Crash Simulation Vehicle Models. Available online: https://www.nhtsa.gov/crash-simulation-vehicle-models (accessed on 13 August 2024).
- Dowler, N.; Stolle, C.; Hinojosa, M.; Fang, H. Full-Scale Crash Test of a Two-Bar Metal Bridge Rail; Report No. TRP-03-419-19; Midwest Roadside Safety Facility, University of Nebraska-Lincoln: Lincoln, NE, USA, 2019. [Google Scholar]
Material | Young’s Modulus | Poisson’s Ratio | Yield Stress | Tangent Modulus | Shear Modulus | Bulk Modulus |
---|---|---|---|---|---|---|
Steel | 200 GPa | 0.3 | 0.448 GPa | 3.2 GPa | N/A | N/A |
Aluminum | 68 GPa | 0.3 | 0.287 GPa | N/A | N/A | N/A |
Concrete | N/A | N/A | N/A | N/A | 11.52 GPa | 12.61 GPa |
Model Attributes | 2010 Toyota Yaris | 2014 Chevy Silverado |
---|---|---|
Mass (kg) | 1101.70 | 2277.60 |
Number of parts | 941 | 1498 |
Number of nodes | 1,488,671 | 2,809,787 |
Number of solid elements | 259,803 | 284,286 |
Number of shell elements | 1,254,993 | 2,654,053 |
Number of beam elements | 4802 | 22,403 |
Number of discrete elements | 19 | 36 |
Test Level | Impact Speed | Impact Angle | CIP Distance to Reference Point |
---|---|---|---|
TL-2 | 70 km/h (44 mph) | 25° | 1100C: 1.01 m; 2270P: 0.80 m |
TL-3 | 100 km/h (62 mph) | 25° | 1100C: 1.10 m; 2270P: 1.31 m |
Vehicle Model | A | B |
---|---|---|
2010 Toyota Yaris (1100C) | 5.16 m | 10.00 m |
2014 Chevy Silverado (2270P) | 4.58 m | 10.00 m |
MASH Criteria | Criterion H | Criterion I | ||
---|---|---|---|---|
OIVx | OIVy | ORAx | ORAy | |
Limit Values | 12.2 m/s | 12.2 m/s | 20.5 G | 20.5 G |
2010 Yaris | 9.57 m/s | 7.73 m/s | 2.44 G | 2.15 G |
2014 Silverado | 5.65 m/s | 5.37 m/s | 5.18 G | 4.86 G |
Evaluation Result | Met | Met | Met | Met |
MASH Criteria | Criterion A | ||||
---|---|---|---|---|---|
Permanent Deflection | Dynamic Deflection | Overriding | Underriding | Penetration | |
Limit Values | / | / | / | / | / |
2010 Yaris | 74.0 mm | 122.9 mm | No | No | No |
2014 Silverado | 122.8 mm | 250.7 mm | No | No | No |
Evaluation Result | Met | Met | Met | Met | Met |
MASH Criteria | Criterion D | Criterion F | Criterion N | ||
---|---|---|---|---|---|
Intrusion of Debris | Maximum Roll Angle | Maximum Pitch Angle | Within Exit Box | Exit Angle | |
Limit Values | / | 75° | 75° | / | / |
2010 Yaris | No | 5.3° | 3.6° | Yes | 20° |
2014 Silverado | No | 7.1° | 2.2° | Yes | 14° |
Evaluation Result | Met | Met | Met | Met | Met |
MASH Criteria | Criterion H | Criterion I | ||
---|---|---|---|---|
OIVx | OIVy | ORAx | ORAy | |
Limit Values | 12.2 m/s | 12.2 m/s | 20.5 G | 20.5 G |
2010 Yaris | 15.28 m/s | 9.87 m/s | 11.04 G | 5.75 G |
2014 Silverado | 9.93 m/s | 8.25 m/s | 8.55 G | 6.28 G |
Evaluation Result | Failed | Met | Met | Met |
MASH Criteria | Criterion A | ||||
---|---|---|---|---|---|
Permanent Deflection | Dynamic Deflection | Overriding | Underriding | Penetration | |
Limit Values | / | / | / | / | / |
2010 Yaris | 137.9 mm | 208.9 mm | No | No | No |
2014 Silverado | 204.6 mm | 283.0 mm | No | No | No |
Evaluation Result | Met | Met | Met | Met | Met |
MASH Criteria | Criterion D | Criterion F | Criterion N | ||
---|---|---|---|---|---|
Intrusion of Debris | Maximum Roll Angle | Maximum Pitch Angle | Within Exit Box | Exit Angle | |
Limit Values | / | 75° | 75° | / | / |
2010 Yaris | No | 6.0° | 10.8° | No | 18° |
2014 Silverado | No | 5.0° | 4.1° | Yes | 16° |
Evaluation Result | Met | Met | Met | Failed | Met |
MASH Criteria | Criterion H | Criterion I | ||
---|---|---|---|---|
OIVx | OIVy | ORAx | ORAy | |
Limit Values | 12.2 m/s | 12.2 m/s | 20.5 G | 20.5 G |
2010 Yaris | 12.68 m/s | 10.35 m/s | 10.50 G | 3.72 G |
Evaluation Result | Fail 1 | Met | Met | Met |
MASH Criteria | Criterion A | ||||
---|---|---|---|---|---|
Permanent Deflection | Dynamic Deflection | Overriding | Underriding | Penetration | |
Limit Values | / | / | / | / | / |
2010 Yaris | 11.25 mm | 14.9 mm | No | No | No |
Evaluation Result | Met | Met | Met | Met | Met |
MASH Criteria | Criterion D | Criterion F | Criterion N | ||
---|---|---|---|---|---|
Intrusion of Debris | Maximum Roll Angle | Maximum Pitch Angle | Within Exit Box | Exit Angle | |
Limit Values | / | 75° | 75° | / | / |
2010 Yaris | No | 6.6° | 3.8° | Yes | 15° |
Evaluation Result | Met | Met | Met | Met | Met |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, H.; Jaus, C.; Wang, Q.; Palta, E.; Pachocki, L.; Bruski, D. Numerical Modeling and Simulation of Vehicular Crashes into Three-Bar Metal Bridge Rail. Computation 2024, 12, 165. https://doi.org/10.3390/computation12080165
Fang H, Jaus C, Wang Q, Palta E, Pachocki L, Bruski D. Numerical Modeling and Simulation of Vehicular Crashes into Three-Bar Metal Bridge Rail. Computation. 2024; 12(8):165. https://doi.org/10.3390/computation12080165
Chicago/Turabian StyleFang, Howie, Christopher Jaus, Qian Wang, Emre Palta, Lukasz Pachocki, and Dawid Bruski. 2024. "Numerical Modeling and Simulation of Vehicular Crashes into Three-Bar Metal Bridge Rail" Computation 12, no. 8: 165. https://doi.org/10.3390/computation12080165
APA StyleFang, H., Jaus, C., Wang, Q., Palta, E., Pachocki, L., & Bruski, D. (2024). Numerical Modeling and Simulation of Vehicular Crashes into Three-Bar Metal Bridge Rail. Computation, 12(8), 165. https://doi.org/10.3390/computation12080165