Torque Calculation and Dynamical Response in Halbach Array Coaxial Magnetic Gears through a Novel Analytical 2D Model
Abstract
:1. Introduction
2. Analytical Modelling
2.1. Magnetic Potential Calculation
- The magnetic potential in the radii and should be zero (, ).
- The continuity of the magnetic potential and the continuity of the radial flux density (derivative of the magnetic potential) between adjacent regions should be satisfied.
- The flux flowing from the inside surface of the modulator ring should be equal to the flux flowing to the outside surface of the modulator ring.
- The flux flowing into the ferromagnetic segment should be equal to the flux flowing out.
2.2. Analytical Torque Calculation of HAL-CMG
2.3. Dynamical System Equations
3. Results
3.1. Torque Calculation, Optimization of HAL-CMG and Comparison with Standard CMG
3.2. Dynamical Response of HAL-CMG Drive
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
magnetic permeability of free space | [H/m] | |
relative magnetic permeability | - | |
number of pole pairs | - | |
width of the coaxial gear | [m] | |
number of ferromagnetic segments | - | |
central slot angle | [rad] | |
central ferromagnetic segment angle | [deg] | |
Subscripts | ||
in | inner rotor | |
out | outer rotor | |
radial direction | ||
tangential direction |
Appendix A
References
- Wang, Y.; Filippini, M.; Bianchi, N.; Alotto, P. A review on magnetic gears: Topologies, computational models, and design aspects. IEEE Trans. Ind. Appl. 2019, 55, 4557–4566. [Google Scholar] [CrossRef]
- Ruiz-Ponce, G.; Arjona, M.A.; Hernandez, C.; Escarela-Perez, R. A Review of Magnetic Gear Technologies Used in Mechanical Power Transmission. Energies 2023, 16, 1721. [Google Scholar] [CrossRef]
- Scheidler, J.J.; Asnani, V.M.; Tallerico, T.F. NASA’s magnetic gearing research for electrified aircraft propulsion. In Proceedings of the AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Cincinnati, OH, USA, 9–11 July 2018; pp. 1–12. [Google Scholar]
- Tallerico, T.F.; Cameron, Z.A.; Scheidler, J.J.; Hasseeb, H. Outer stator magnetically-geared motors for electrified urban air mobility vehicles. In Proceedings of the AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Virtual Event, 24–28 August 2020; pp. 1–25. [Google Scholar]
- Chau, K.T.; Zhang, D.; Jiang, J.Z.; Liu, C.; Zhang, Y.J. Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles. IEEE Trans. Magn. 2007, 43, 2504–2506. [Google Scholar] [CrossRef]
- McGilton, B.; Crozier, R.; McDonald, A.; Mueller, M. Review of magnetic gear technologies and their applications in marine energy. IET Renew. Power Gener. 2018, 12, 174–181. [Google Scholar] [CrossRef]
- Johnson, M.; Gardner, M.C.; Toliyat, H.A.; Englebretson, S.; Ouyang, W.; Tschida, C. Design, construction, and analysis of a large-scale inner stator radial flux magnetically geared generator for wave energy conversion. IEEE Trans. Ind. Appl. 2018, 54, 3305–3314. [Google Scholar] [CrossRef]
- Baninajar, H.; Modaresahmadi, S.; Wong, H.Y.; Bird, J.; Williams, W.; Dechant, B. Designing a Halbach rotor magnetic gear for a marine hydrokinetic generator. IEEE Trans. Ind. Appl. 2022, 58, 6069–6080. [Google Scholar] [CrossRef]
- Esnoz-Larraya, J.; Valiente-Blanco, I.; Cristache, C.; Sanchez-Garcia-Casarrubios, J.; Rodriguez-Celis, F.; Diez-Jimenez, E.; Perez-Diaz, J.L. Optimagdrive: Highperformance magnetic gears development for space applications. In Proceedings of the ESMATS, Hatfield, UK, 20–22 September 2017. [Google Scholar]
- Atallah, K.; Howe, D. A novel high-performance magnetic gear. IEEE Trans. Magn. 2001, 37, 2844–2846. [Google Scholar] [CrossRef]
- Jian, L.; Chau, K.T. A coaxial magnetic gear with Halbach permanent-magnet arrays. IEEE Trans. Energy Convers. 2010, 25, 319–328. [Google Scholar] [CrossRef]
- Wong, H.Y.; Bird, J.Z.; Barnett, D.; Williams, W. A high torque density Halbach rotor coaxial magnetic gear. In Proceedings of the 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, 12–15 May 2019; pp. 233–239. [Google Scholar]
- Cameron, Z.A.; Tallerico, T.; Scheidler, J. Lessons learned in fabrication of a high-specific-torque concentric magnetic gear. In Proceedings of the Vertical Flight Society 75th Annual Forum & Technology Display, Philadelphia, PA, USA, 13–16 May 2019. [Google Scholar]
- Jiang, Y.; Deng, Y.; Zhu, P.; Yang, M.; Zhou, F. Optimization on size of Halbach array permanent magnets for magnetic levitation system for permanent magnet Maglev train. IEEE Access 2021, 9, 44989–45000. [Google Scholar] [CrossRef]
- Hilton, J.E.; McMurry, S.M. An adjustable linear Halbach array. J. Magn. Magn. Mater. 2012, 324, 2051–2056. [Google Scholar] [CrossRef]
- Jing, L.; Su, Z.; Wang, T.; Wang, Y.; Qu, R. Multi-objective optimization analysis of magnetic gear with HTS bulks and uneven Halbach arrays. IEEE Trans. Appl. Supercond. 2023, 33, 5202705. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Howe, D. Halbach permanent magnet machines and applications: A review. Inst. Electr. Eng. Proc. Electr. Power Appl. 2001, 148, 299–308. [Google Scholar] [CrossRef]
- Jing, L.; Liu, W.; Tang, W.; Qu, R. Design and optimization of coaxial magnetic gear with double-layer PMs and spoke structure for tidal power generation. IEEE/ASME Trans. Mechatron. 2023, 28, 3263–3271. [Google Scholar] [CrossRef]
- Aloeyi, E.F.; Shoaei, A.; Wang, Q. A hybrid coaxial magnetic gear using flux-focusing halbach permanent magnet arrangement. In Proceedings of the 2023 IEEE 14th International Conference on Power Electronics and Drive Systems (PEDS), Montreal, QC, Canada, 7–10 August 2023; pp. 1–6. [Google Scholar]
- Jian, L.; Chau, K.T. Analytical calculation of magnetic field distribution in coaxial magnetic gears. Prog. Electromagn. Res. 2009, 92, 1–16. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Wang, C.; Chen, Z. Analysis and design optimization of a coaxial surface-mounted permanent-magnet magnetic gear. Energies 2014, 7, 8535–8553. [Google Scholar] [CrossRef]
- Jian, L.; Deng, Z.; Shi, Y.; Wei, J.; Chan, C.C. The mechanism how coaxial magnetic gear transmits magnetic torques between its two rotors: Detailed analysis of torque distribution on modulating ring. IEEE/ASME Trans. Mechatron. 2019, 24, 763–773. [Google Scholar] [CrossRef]
- Spałek, D. Analytical electromagnetic field and forces calculation for linear, cylindrical and spherical electromechanical converters. Bull. Pol. Acad. Sci. Tech. Sci. 2004, 52, 239–250. [Google Scholar]
- Niguchi, N.; Hirata, K. Cogging torque analysis of magnetic gear. IEEE Trans. Ind. Electron. 2011, 59, 2189–2197. [Google Scholar] [CrossRef]
- Tzouganakis, P.; Gakos, V.; Kalligeros, C.; Tsolakis, A.; Spitas, V. Fast and efficient simulation of the dynamical response of coaxial magnetic gears through direct analytical torque modelling. Simul. Model. Pract. Theory 2023, 123, 102699. [Google Scholar] [CrossRef]
- Lubin, T.; Mezani, S.; Rezzoug, A. Development of a 2-D analytical model for the electromagnetic computation of axial-field magnetic gears. IEEE Trans. Magn. 2013, 49, 5507–5521. [Google Scholar] [CrossRef]
[mm] | |
[mm] | |
[mm] | |
[mm] | |
[mm] | |
[mm] | |
[mm] | |
[mm] | |
[deg] | |
[T] | |
[kgm2] | |
[kgm2] |
Inner Rotor | |
[deg] | |
[deg] | |
[deg] | |
[deg] | |
Outer Rotor | |
[deg] | |
[deg] | |
[deg] | |
[deg] |
Amplitude of Inner Rotor Harmonic (Nm) | Amplitude of Outer Rotor Harmonic (Nm) | ||||
---|---|---|---|---|---|
Standard CMG | HAL-CMG | Standard CMG | HAL-CMG | ||
333.81 | 381.89 | 832.98 | 952.95 | ||
1.25 | 1.09 | 3.26 | 2.88 | ||
0.02 | 0.001 | 0.05 | 0.002 |
Time [s] | Velocity of Inner Rotor [rpm] |
---|---|
0 | 0 |
10 | 2500 |
45 | 2500 |
50 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzouganakis, P.; Gakos, V.; Kalligeros, C.; Papalexis, C.; Tsolakis, A.; Spitas, V. Torque Calculation and Dynamical Response in Halbach Array Coaxial Magnetic Gears through a Novel Analytical 2D Model. Computation 2024, 12, 88. https://doi.org/10.3390/computation12050088
Tzouganakis P, Gakos V, Kalligeros C, Papalexis C, Tsolakis A, Spitas V. Torque Calculation and Dynamical Response in Halbach Array Coaxial Magnetic Gears through a Novel Analytical 2D Model. Computation. 2024; 12(5):88. https://doi.org/10.3390/computation12050088
Chicago/Turabian StyleTzouganakis, Panteleimon, Vasilios Gakos, Christos Kalligeros, Christos Papalexis, Antonios Tsolakis, and Vasilios Spitas. 2024. "Torque Calculation and Dynamical Response in Halbach Array Coaxial Magnetic Gears through a Novel Analytical 2D Model" Computation 12, no. 5: 88. https://doi.org/10.3390/computation12050088
APA StyleTzouganakis, P., Gakos, V., Kalligeros, C., Papalexis, C., Tsolakis, A., & Spitas, V. (2024). Torque Calculation and Dynamical Response in Halbach Array Coaxial Magnetic Gears through a Novel Analytical 2D Model. Computation, 12(5), 88. https://doi.org/10.3390/computation12050088