Analyzing the MHD Bioconvective Eyring–Powell Fluid Flow over an Upright Cone/Plate Surface in a Porous Medium with Activation Energy and Viscous Dissipation
Abstract
:1. Introduction
2. Mathematical Model
3. Computational Solution
- Next, these equations are discretized utilizing an appropriate finite difference scheme.
- Newton’s method is utilized throughout the discretization procedure to achieve equation linearization.
- The block tri-diagonal matrices are then constructed utilizing the system of linear equations.
4. Result and Findings
4.1. Velocity Profile
4.2. Temperature Profile
4.3. Concentration Profile
4.4. Microorganism Profile
5. Conclusions
- While increasing the MHD and porosity parameter:
- Heat transfer increased by 14.24% and 19.36%;
- Mass transfer increased by 13.20% and 16.4%;
- Microorganism diffusion increased by 14.67% and 15.37%.
- While increasing the Eyring–Powell fluid parameter:
- Heat transfer increased by 8.47%;
- Mass transfer increased by 8.45%.
- While increasing the Eckert number and heat source/sink parameter:
- Heat transfer increased by 6.32% and 15.34%.
- While decreasing the chemical reaction parameter:
- Mass transfer increased by 16.6%;
- Microorganism diffusion increased by 3.3%.
- While increasing the activation energy parameter:
- Mass transfer increased by 18.2%;
- Microorganism diffusion increased by 4.1%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
b | The chemotaxis constant of bioconvection |
Magnetic parameter | |
C | Concentration |
Specific heat | |
d | Physical Eyring–Powell fluid parameter |
Mass diffusivity | |
Diffusivity of microorganisms | |
Dimensionless activation energy coefficient | |
Activation energy coefficient | |
Eckert number | |
K | Dimensionless Eyring–Powell parameter |
Dimensionless chemical reaction parameter | |
Porosity parameter | |
Dimensional chemical reaction parameter | |
Bioconvection Lewis number | |
M | Dimensionless magnetic parameter |
n | Fitted rate constant |
N | Density of microorganisms |
Non-Newtonian fluid parameter | |
Buoyancy ratio parameter | |
Prandtl number | |
Bioconvection Péclet number | |
Dimensionless uniform heat source/sink parameter | |
Dimensional heat uniform source/sink parameter | |
Bioconvection Rayleigh number | |
Schmidt number | |
T | Temperature |
Velocity component | |
The maximum cell swimming speed | |
Greek Symbols | |
Thermal diffusivity | |
The parameter of the Eyring–Powell fluid characteristics | |
Thermal, concentration, and microorganism volumetric expansion | |
The temperature relative parameter | |
The typical amount of microbes | |
Dimensionless porosity constant | |
Boltzmann constant | |
Dimensionless thermal function | |
Dynamic viscosity | |
Kinematic viscosity | |
Dimensionless boundary layer coordinate | |
Stream function | |
Density | |
Constant of bioconvection | |
Dimensionless function of concentration | |
Dimensionless function of microorganisms density |
References
- Hansen, A.; Na, T. Similarity solutions of laminar, incompressible boundary layer equations of non-Newtonian fluids. J. Basic Eng. 1968, 90, 71–74. [Google Scholar] [CrossRef]
- Lin, F. Laminar free convection from a vertical cone with uniform surface heat flux. Lett. Heat Mass Transf. 1976, 3, 49–58. [Google Scholar]
- Shima, A.; Tsujino, T. The effect of polymer concentration on the bubble behaviour and impulse pressure. Chem. Eng. Sci. 1981, 36, 931–935. [Google Scholar] [CrossRef]
- Hartnett, J.P.; Kwack, E. Prediction of friction and heat transfer for viscoelastic fluids in turbulent pipe flow. Int. J. Thermophys. 1986, 7, 53–63. [Google Scholar] [CrossRef]
- Sirohi, V.; Timol, M.; Kalthia, N. Powell-Eyring model flow near an accelerated plate. Fluid Dyn. Res. 1987, 2, 193. [Google Scholar] [CrossRef]
- Kumari, M.; Pop, I.; Nath, G. Mixed convection along a vertical cone. Int. Commun. Heat Mass Transf. 1989, 16, 247–255. [Google Scholar] [CrossRef]
- Abd-el Hafiz, A.M. Steady flow in an infinite cylindrical pipe of a mixture consisting of a newtonian and a non-Newtonian phase (the case of eyring Powell model). J. Phys. Soc. Jpn. 1991, 60, 879–883. [Google Scholar] [CrossRef]
- Kafoussias, N. MHD free convective flow through a non homogeneous porous medium over an isothermal cone surface. Mech. Res. Commun. 1992, 19, 89–99. [Google Scholar] [CrossRef]
- Hossain, M.; Paul, S. Free convection from a vertical permeable circular cone with non-uniform surface temperature. Acta Mech. 2001, 151, 103–114. [Google Scholar] [CrossRef]
- Eldabe, N.; Hassan, A.; Mohamed, M.A. Effect of couple stresses on the MHD of a non-Newtonian unsteady flow between two parallel porous plates. Z. Naturforschung A 2003, 58, 204–210. [Google Scholar] [CrossRef]
- Yürüsoy, M. A Study of pressure distribution of a slider bearing lubricated with Powell-Eyring fluid. Turk. J. Eng. Environ. Sci. 2003, 27, 299–304. [Google Scholar]
- Barth, W.L.; Carey, G.F. On a natural-convection benchmark problem in non-Newtonian fluids. Numer. Heat Transf. Part Fundam. 2006, 50, 193–216. [Google Scholar] [CrossRef]
- Pullepu, B.; Ekambavanan, E.; Chamkha, A. Unsteady laminar natural convection from a non-isothermal vertical cone. Nonlinear Anal. Model. Control 2007, 12, 525–540. [Google Scholar] [CrossRef]
- Pullepu, B.; Ekambavanan, K.; Chamkha, A. Unsteady laminar free convection from a vertical cone with uniform surface heat flux. Nonlinear Anal. Model. Control 2008, 13, 47–60. [Google Scholar] [CrossRef]
- Patel, M.; Timol, M. Numerical treatment of Powell–Eyring fluid flow using method of satisfaction of asymptotic boundary conditions (MSABC). Appl. Numer. Math. 2009, 59, 2584–2592. [Google Scholar] [CrossRef]
- Patel, M.; Timol, M. The stress-strain relationship for visco-inelastic non-Newtonian fluids. Int. J. Appl. Math. Mech. 2010, 6, 79–93. [Google Scholar]
- Raju, C.; Jayachandrababu, M.; Sandeep, N.; Mohankrishna, P. Influence of non-uniform heat source/sink on MHD nanofluid flow over a moving vertical plate in porous medium. Int. J. Sci. Eng. Res 2015, 6, 31–42. [Google Scholar]
- Jayachandra Babu, M.; Sandeep, N.; Raju, C.S. Heat and mass transfer in MHD Eyring-Powell nanofluid flow due to cone in porous medium. Int. J. Eng. Res. Afr. 2016, 19, 57–74. [Google Scholar] [CrossRef]
- Koriko, O.; Animasaun, I.; Reddy, M.G.; Sandeep, N. Scrutinization of thermal stratification, nonlinear thermal radiation and quartic autocatalytic chemical reaction effects on the flow of three-dimensional Eyring-Powell alumina-water nanofluid. Multidiscip. Model. Mater. Struct. 2018, 14, 261–283. [Google Scholar] [CrossRef]
- Khan, M.; Irfan, M.; Khan, W.; Ahmad, L. Modeling and simulation for 3D magneto Eyring–Powell nanomaterial subject to nonlinear thermal radiation and convective heating. Results Phys. 2017, 7, 1899–1906. [Google Scholar] [CrossRef]
- Khan, I.; Khan, M.; Malik, M.Y.; Salahuddin, T. Mixed convection flow of Eyring-Powell nanofluid over a cone and plate with chemical reactive species. Results Phys. 2017, 7, 3716–3722. [Google Scholar] [CrossRef]
- Rehman, K.U.; Saba, N.U.; Malik, M.; Malik, A.A. Encountering heat and mass transfer mechanisms simultaneously in Powell-Erying fluid through Lie symmetry approach. Case Stud. Therm. Eng. 2017, 10, 541–549. [Google Scholar] [CrossRef]
- Simon, S.G.; Bira, B.; Zeidan, D. Optimal systems, series solutions and conservation laws for a time fractional cancer tumor model. Chaos Solitons Fractals 2023, 169, 113311. [Google Scholar] [CrossRef]
- Waqas, M.; Khan, M.I.; Hayat, T.; Alsaedi, A.; Khan, M.I. On Cattaneo–Christov double diffusion impact for temperature-dependent conductivity of Powell–Eyring liquid. Chin. J. Phys. 2017, 55, 729–737. [Google Scholar] [CrossRef]
- Balazadeh, N.; Sheikholeslami, M.; Ganji, D.D.; Li, Z. Semi analytical analysis for transient Eyring-Powell squeezing flow in a stretching channel due to magnetic field using DTM. J. Mol. Liq. 2018, 260, 30–36. [Google Scholar] [CrossRef]
- Layek, G.; Mandal, B.; Bhattacharyya, K. Dufour and soret effects on unsteady heat and mass transfer for powell-eyring fluid flow over an expanding permeable sheet. J. Appl. Comput. Mech. 2020, 6, 985–998. [Google Scholar]
- Khan, S.U.; Waqas, H.; Muhammad, T.; Imran, M.; Aly, S. Simultaneous effects of bioconvection and velocity slip in three-dimensional flow of Eyring-Powell nanofluid with Arrhenius activation energy and binary chemical reaction. Int. Commun. Heat Mass Transf. 2020, 117, 104738. [Google Scholar] [CrossRef]
- Khan, B.M.H.; Gaffar, S.A.; Beg, O.A.; Kadir, A.; Reddy, P.R. Computation of Eyring-Powell micropolar convective boundary layer flow from an inverted non-isothermal cone: Thermal polymer coating simulation. Comput. Therm. Sci. Int. J. 2020, 12, 329–344. [Google Scholar] [CrossRef]
- Khan, N.M.; Bacha, H.B.; Pan, K.; Saeed, T. Nonlinear Eyring–Powell bioconvective nanofluid flow over a vertical plate with temperature dependent viscosity and surface suction. Int. Commun. Heat Mass Transf. 2021, 128, 105602. [Google Scholar] [CrossRef]
- Oke, A. Coriolis effects on MHD flow of MEP fluid over a non-uniform surface in the presence of thermal radiation. Int. Commun. Heat Mass Transf. 2021, 129, 105695. [Google Scholar] [CrossRef]
- Qaiser, D.; Zheng, Z.; Khan, M.R. Numerical assessment of mixed convection flow of Walters-B nanofluid over a stretching surface with Newtonian heating and mass transfer. Therm. Sci. Eng. Prog. 2021, 22, 100801. [Google Scholar] [CrossRef]
- Xia, W.F.; Haq, F.; Saleem, M.; Khan, M.I.; Khan, S.U.; Chu, Y.M. Irreversibility analysis in natural bio-convective flow of Eyring-Powell nanofluid subject to activation energy and gyrotactic microorganisms. Ain Shams Eng. J. 2021, 12, 4063–4074. [Google Scholar] [CrossRef]
- Fatunmbi, E.O.; Adeosun, A.T.; Salawu, S.O. Irreversibility Analysis for Eyring–Powell Nanoliquid Flow Past Magnetized Riga Device with Nonlinear Thermal Radiation. Fluids 2021, 6, 416. [Google Scholar] [CrossRef]
- Habib, U.; Abdal, S.; Siddique, I.; Ali, R. A comparative study on micropolar, Williamson, Maxwell nanofluids flow due to a stretching surface in the presence of bioconvection, double diffusion and activation energy. Int. Commun. Heat Mass Transf. 2021, 127, 105551. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Optimal boundary control of the Boussinesq approximation for polymeric fluids. J. Optim. Theory Appl. 2021, 189, 623–645. [Google Scholar] [CrossRef]
- Farooq, M.; Anjum, A.; Rehman, S.; Malik, M. Entropy analysis in thermally stratified Powell-Eyring magnesium-blood nanofluid convection past a stretching surface. Int. Commun. Heat Mass Transf. 2022, 138, 106375. [Google Scholar] [CrossRef]
- El-Dabe, N.; Mostapha, D.R. Hall current effects on electro-magneto-dynamic peristaltic flow of an Eyring–Powell fluid with mild stenosis through a uniform and non-uniform annulus. Indian J. Phys. 2022, 96, 2841–2853. [Google Scholar] [CrossRef]
- Thameem Basha, H.; Reddy, S.; Prasad, V.R.; Son, K.J.; Ahammad, N.A.; Akkurt, N. Non-similar solutions and sensitivity analysis of nano-magnetic Eyring–Powell fluid flow over a circular cylinder with nonlinear convection. Waves Random Complex Media 2022. [Google Scholar] [CrossRef]
- Khan, S.U.; Irfan, M.; Khan, M.I.; Abbasi, A.; Rahman, S.U.; Niazi, U.M.; Farooq, S. Bio-convective Darcy-Forchheimer oscillating thermal flow of Eyring-Powell nanofluid subject to exponential heat source/sink and modified Cattaneo–Christov model applications. J. Indian Chem. Soc. 2022, 99, 100399. [Google Scholar] [CrossRef]
- Anjum, N.; Khan, W.; Hobiny, A.; Azam, M.; Waqas, M.; Irfan, M. Numerical analysis for thermal performance of modified Eyring Powell nanofluid flow subject to activation energy and bioconvection dynamic. Case Stud. Therm. Eng. 2022, 39, 102427. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Kumar, R.; Bahadur, S.; Seth, G. Modeling and interpretation of peristaltic transport of Eyring–Powell fluid through uniform/non-uniform channel with Joule heating and wall flexibility. Chin. J. Phys. 2022, 80, 167–182. [Google Scholar] [CrossRef]
- Pasha, A.A.; Islam, N.; Jamshed, W.; Alam, M.I.; Jameel, A.G.A.; Juhany, K.A.; Alsulami, R. Statistical analysis of viscous hybridized nanofluid flowing via Galerkin finite element technique. Int. Commun. Heat Mass Transf. 2022, 137, 106244. [Google Scholar] [CrossRef]
- Shevchuk, I.V. An analytical solution for convective heat transfer in conical gaps with either cone or disk rotating. Phys. Fluids 2023, 35. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Exact Solutions for Non-Isothermal Flows of Second Grade Fluid between Parallel Plates. Nanomaterials 2023, 13, 1409. [Google Scholar] [CrossRef]
- Nisha, S.S.; De, P. Hall Currents and Ion Slip Effect on Sisko Nanofluid Flow Featuring Chemical Reaction over Porous Medium-A Statistical Approach. Spec. Top. Rev. Porous Media Int. J. 2024, 15, 79–93. [Google Scholar] [CrossRef]
Lin [2] | Current Work | |||
---|---|---|---|---|
0.72 | 0.898300 | 1.523690 | 0.937134 | 1.570613 |
1 | 0.784465 | 1.391746 | 0.832299 | 1.439581 |
2 | 0.652528 | 1.162097 | 0.700363 | 1.209932 |
4 | 0.463073 | 0.980958 | 0.510909 | 1.028794 |
6 | 0.396883 | 0.891957 | 0.444721 | 0.939794 |
8 | 0.355639 | 0.834979 | 0.403477 | 0.882817 |
10 | 0.326555 | 0.793885 | 0.374394 | 0.841724 |
100 | 0.133715 | 0.483722 | 0.181555 | 0.531562 |
0.3 | 1 | 1 | 0.3 | -0.1 | 0.5 | 0.5 | 6.8 | 0.8276611 | 0.6264303 | 0.7739583 | 0.7403775 |
0.5 | 0.8470072 | 0.6437625 | 0.7457247 | 0.7115269 | |||||||
0.7 | 0.8696108 | 0.6609366 | 0.7206157 | 0.6863384 | |||||||
0.5 | 0.8470072 | 0.6437628 | 0.7457247 | 0.7115263 | |||||||
0.7 | 0.8696108 | 0.6609369 | 0.7206157 | 0.6863379 | |||||||
0.9 | 0.8925743 | 0.6771554 | 0.6982958 | 0.6641069 | |||||||
0.3 | 0.8968186 | 0.6879259 | 0.7850504 | 0.7688138 | |||||||
0.5 | 0.8749441 | 0.6681376 | 0.7827928 | 0.7607958 | |||||||
0.7 | 0.8548882 | 0.6502805 | 0.7796985 | 0.7526417 | |||||||
0.3 | 0.8256691 | 0.6241277 | 0.7720337 | 0.7373497 | |||||||
0.6 | 0.833363 | 0.6280245 | 0.5775666 | 0.6255623 | |||||||
0.9 | 0.8413745 | 0.6320319 | 0.3736041 | 0.5103081 | |||||||
−0.1 | 0.7913353 | 0.5908076 | 1.0579258 | 1.0455024 | |||||||
0 | 0.810632 | 0.6096124 | 0.7892907 | 0.7541461 | |||||||
0.1 | 0.8346166 | 0.6345497 | 0.4739704 | 0.3980173 | |||||||
0.5 | 0.8127954 | 0.6117887 | 0.7601186 | 0.7219011 | |||||||
1 | 0.9791096 | 0.7483265 | 0.7676565 | 0.7561591 | |||||||
1.5 | 1.1181125 | 0.8755358 | 0.7502905 | 0.7703388 | |||||||
0.5 | 0.8127954 | 0.6117887 | 0.7601186 | 0.7219011 | |||||||
1 | 0.9772917 | 0.7473042 | 0.7676901 | 0.7558917 | |||||||
1.5 | 1.114516 | 0.8730627 | 0.7512737 | 0.7700876 | |||||||
6.8 | 0.8127954 | 0.6117887 | 0.7601186 | 0.7219011 | |||||||
7.8 | 0.8052942 | 0.6057737 | 0.7906545 | 0.7544055 | |||||||
8.8 | 0.7987378 | 0.6004823 | 0.8176548 | 0.7837094 |
0.3 | 1 | 1 | 0.3 | 1 | 1 | 0.5 | 0.7 | 0.6067597 | 0.5806644 | 0.6308123 | 0.5936918 |
0.5 | 0.5990076 | 0.5748254 | 0.6196365 | 0.5848375 | |||||||
0.7 | 0.5924407 | 0.5699847 | 0.6100861 | 0.5773683 | |||||||
0.5 | 0.5990076 | 0.5748254 | 0.6196365 | 0.5848376 | |||||||
0.7 | 0.5924407 | 0.5699848 | 0.6100861 | 0.5773683 | |||||||
0.9 | 0.5868241 | 0.5659283 | 0.6018375 | 0.5709893 | |||||||
0.3 | 0.6295077 | 0.5997143 | 0.6612226 | 0.6200352 | |||||||
0.5 | 0.6220819 | 0.5933534 | 0.6513683 | 0.6113485 | |||||||
0.7 | 0.6154555 | 0.5877915 | 0.6425197 | 0.6036701 | |||||||
0.3 | 0.6067597 | 0.5806644 | 0.6308123 | 0.5936919 | |||||||
0.5 | 0.725906 | 0.7091557 | 0.7572944 | 0.7271007 | |||||||
0.7 | 0.8360051 | 0.8261611 | 0.8846352 | 0.8600359 | |||||||
−1 | 1.0086156 | 0.9978203 | 1.0697198 | 1.0428716 | |||||||
0 | 0.7667685 | 0.7507371 | 0.7902278 | 0.7599957 | |||||||
1 | 0.6067597 | 0.5806644 | 0.6308123 | 0.5936919 | |||||||
0.5 | 0.5332354 | 0.5212129 | 0.5921514 | 0.5620565 | |||||||
1 | 0.6067597 | 0.5806644 | 0.6308123 | 0.5936919 | |||||||
1.5 | 0.6676092 | 0.6315215 | 0.6684937 | 0.6246851 | |||||||
0.3 | 0.4992610 | 0.494676 | 0.5771215 | 0.5497044 | |||||||
0.5 | 0.5332354 | 0.5212129 | 0.5921514 | 0.5620565 | |||||||
0.7 | 0.5644747 | 0.5461578 | 0.6075921 | 0.5746854 | |||||||
0.5 | 0.6106761 | 0.5836606 | 0.536743 | 0.5002762 | |||||||
0.7 | 0.6067597 | 0.5806644 | 0.6308123 | 0.5936919 | |||||||
0.9 | 0.6030955 | 0.5778879 | 0.7215598 | 0.6838918 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peter, F.; Sambath, P.; Dhanasekaran, S. Analyzing the MHD Bioconvective Eyring–Powell Fluid Flow over an Upright Cone/Plate Surface in a Porous Medium with Activation Energy and Viscous Dissipation. Computation 2024, 12, 48. https://doi.org/10.3390/computation12030048
Peter F, Sambath P, Dhanasekaran S. Analyzing the MHD Bioconvective Eyring–Powell Fluid Flow over an Upright Cone/Plate Surface in a Porous Medium with Activation Energy and Viscous Dissipation. Computation. 2024; 12(3):48. https://doi.org/10.3390/computation12030048
Chicago/Turabian StylePeter, Francis, Paulsamy Sambath, and Seshathiri Dhanasekaran. 2024. "Analyzing the MHD Bioconvective Eyring–Powell Fluid Flow over an Upright Cone/Plate Surface in a Porous Medium with Activation Energy and Viscous Dissipation" Computation 12, no. 3: 48. https://doi.org/10.3390/computation12030048
APA StylePeter, F., Sambath, P., & Dhanasekaran, S. (2024). Analyzing the MHD Bioconvective Eyring–Powell Fluid Flow over an Upright Cone/Plate Surface in a Porous Medium with Activation Energy and Viscous Dissipation. Computation, 12(3), 48. https://doi.org/10.3390/computation12030048