Numerical Determination of a Time-Dependent Boundary Condition for a Pseudoparabolic Equation from Integral Observation
Abstract
:1. Introduction
- ■
- We formulate an initial boundary-value problem for a new third-order, two-dimensional pseudoparabolic equation and pose a time-dependent inverse problem for determining an unknown boundary condition based on integral observations;
- ■
- Using the integral condition, we reduce the two-dimensional inverse problem to an equivalent direct one-dimensional problem;
- ■
- We develop an efficient numerical method based on a non-standard local approach to solve the one-dimensional non-local problem;
- ■
- We propose effective computational algorithms for the implementation of this numerical method;
- ■
- We present results from computational simulations that demonstrate the effectiveness of the numerical method.
2. The Direct and Inverse Problems
2.1. Setup of the Direct and Inverse Problems
2.2. Well-Posedness of the Direct Problem
3. Reduction of the Two-Dimensional Problems to One-Dimensional Problems
4. Numerical Solution of Problem (9)–(12)
4.1. Local Approach
Algorithm 1 Method for recovering and |
Require: , , , , , , , . Ensure: , . Main steps: 1. Solve (15)–(18) to find . 2. Find from (14). 3. Find from (13). 4. Solve the direct problem (1)–(6) to find . |
4.2. Numerical Realization
Algorithm 2 Numerical method for recovering and |
Require: , , , , , , , Ensure: , , , , . Main steps: 1. Solve (24) to find , , . 2. Compute , from (25). 3. Compute , from (13). 4. Solve (26) to find , , , . |
5. Computational Experiments
- TP1: , ;
- TP2: , ;
- TP3: , .
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amar, M.; Andreucci, D.; Gianni, R.; Timofte, C. Well-posedness of two pseudo-parabolic problems for electrical conduction in heterogeneous media. J. Math. Anal. Appl. 2021, 493, 124533. [Google Scholar] [CrossRef]
- Abreu, E.; Durán, A. Spectral discretizations analysis with time strong stability preserving properties for pseudo-parabolic models. Comput. Math. Appl. 2021, 102, 15–44. [Google Scholar] [CrossRef]
- Aitzhanov, S.; Isakhov, A.; Zhalgassova, K.; Ashurova, G. The coefficient inverse problem for a pseudoparabolic equation of the third order. J. Math. Mech. Comput. Sci. 2023, 119, 3–18. [Google Scholar] [CrossRef]
- Barenblatt, G.I.; Entov, V.M.; Ryzhik, V.M. Theory of Fluid Flow Through Natural Rocks; Kluwer: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Barenblatt, G.I.; Bertsch, M.; Dal Passo, R.; Ughi, M. A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow. SIAM J. Math. Anal. 1993, 24, 1414–1439. [Google Scholar] [CrossRef]
- Düll, W.P. Some qualitative properties of solutions to a pseudoparabolic equation modeling solvent uptake in polymeric solids Commun. Partial Differ. Equ. 2006, 31, 1117–1138. [Google Scholar] [CrossRef]
- Vromans, A.J.; van de Ven, F.; Muntean, A. Existence of Weak Solutions for a Pseudo-Parabolic System Coupling Chemical Reactions, Diffusion and Momentum Equations; CASA-Report; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2017; Volume 1703, 35p.
- Coleman, B.D.; Duffin, R.J.; Mizel, V.J. Instability, uniqueness, and nonexistence theorems for the equation ut = uxx − uxtx on a strip. Arch. Ration. Mech. Anal. 1965, 19, 100–116. [Google Scholar] [CrossRef]
- Showalter, R.E.; Ting, T.W. Pseudoparabolic partial differential equations. SIAM J. Math. Anal. 1970, 1, 1–26. [Google Scholar] [CrossRef]
- Bouziani, A. Solvability of nonlinear pseudoparabolic equation with a nonlocal boundary condition. Nonlinear Anal. Theory Methods Appl. 2003, 55, 883–904. [Google Scholar] [CrossRef]
- Ngoc, L.T.P.; Uyen, K.T.T.; Nhan, N.H.; Longet, N.T. On a system of non-linear pseudoparabolic equations with Robin-Dirichlet boundary conditions. Commun. Pure Appl. Anal. 2022, 21, 585–623. [Google Scholar] [CrossRef]
- Beshtokov, M.K. Boundary value problems for a pseudoparabolic equation with the Caputo fractional derivative. Diff. Equ. 2019, 55, 884–893. [Google Scholar] [CrossRef]
- Xie, M.; Tan, Z.; Wu, Z. Local existence and uniqueness of weak solutions to fractional pseudo-parabolic equation with singular potential. Appl. Math. Lett. 2021, 114, 106898. [Google Scholar] [CrossRef]
- Sapagovas, M.; Štikonas, A.; Štikoniene, O. ADI method for pseudoparabolic equation with nonlocal boundary conditions. Mathematics 2023, 11, 1303. [Google Scholar] [CrossRef]
- Amirali, I.; Amiraliyev, G.M. Three layer difference method for linear pseudo-parabolic equation with delay. J. Comput. Appl. Math. 2022, 401, 113786. [Google Scholar] [CrossRef]
- Amirali, I.; Amiraliyev, G.M. Numerical solution of linear pseudo-parabolic equation with time delay using three layer difference method. J. Comput. Appl. Math. 2024, 436, 115417. [Google Scholar] [CrossRef]
- Wang, K. Two-grid methods for nonlinear pseudo-parabolic integro-differential equations by finite element method. Comput. Math. Appl. 2024, 168, 174–189. [Google Scholar] [CrossRef]
- Benjamin, T.B.; Bona, J.L.; Mahony, J.J. Model equations for long waves in nonlinear dispersive systems. Phil. Trans. R. Soc. Lond. 1972, 272, 47–78. [Google Scholar]
- Chertovskih, R.; Chian, A.C.L.; Podvigina, O.; Rempel, E.L.; Zheligovsky, V. Existence, uniqueness, and analyticity of space-periodic solutions to the regularized long-wave equation. Adv. Differ. Equ. 2014, 19, 725–754. [Google Scholar] [CrossRef]
- Hasanov, A.H.; Romanov, V.G. Introduction to Inverse Problems for Differential Equations, 1st ed.; Springer: Cham, Switzerland, 2017; 261p. [Google Scholar]
- Isakov, V. Inverse Problems for Partial Differential Equations, 3rd ed.; Springer: Cham, Switzerland, 2017; p. 406. [Google Scholar]
- Ivanov, V.K.; Vasin, V.V.; Tanana, V.P. Theory of Linear Ill-Posed Problems and Its Approximations; Nauka: Moscow, Russia, 1978. (In Russian) [Google Scholar]
- Kabanikhin, S.I. Inverse and Ill-Posed Problems; DeGruyer: Berlin, Germany, 2011. [Google Scholar]
- Lesnic, D. Inverse Problems with Applications in Science and Engineering; CRC Press: Abingdon, UK, 2021; p. 349. [Google Scholar]
- Prilepko, A.I.; Orlovsky, D.G.; Vasin, I.A. Methods for Solving Inverse Problems in Mathematical Physics; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Tikhonov, A.; Arsenin, V. Solutions of Ill-Posed Problems; Winston: Washington, DC, USA, 1977. [Google Scholar]
- Samarskii, A.A.; Vabishchevich, P.N. Numerical Methods for Solving Inverse Problems in Mathematical Physics; de Gruyter: Berlin, Germany, 2007; 438p. [Google Scholar]
- Lyubanova, A.S.; Tani, A. On inverse problems for pseudoparabolic and parabolic equations of filtration. Inverse Probl. Sci. Eng. 2011, 19, 1023–1042. [Google Scholar] [CrossRef]
- Jaluria, Y. Solution of inverse problems in thermal systems. J. Therm. Sci. Eng. Appl. 2020, 12, 011005. [Google Scholar] [CrossRef]
- Khompysh, K.; Huntul, M.J.; Shazyndayeva, M.K.; Iqbal, M.K. An inverse problem for pseudoparabolic equation: Existence, uniqueness, stability, and numerical analysis. Quaest. Math. 2024, 47, 1979–2001. [Google Scholar] [CrossRef]
- Nikolaev, O.Y. Solvability of the linear inverse problem for the pseudoparabolic equation. Math. Notes NEFU 2023, 30, 58–66. [Google Scholar]
- Huntul, M.J.; Khompysh, K.; Shazyndayeva, M.K.; Iqbal, M.K. An inverse source problem for a pseudoparabolic equation with memory. AIMS Math. 2024, 9, 14186–14212. [Google Scholar] [CrossRef]
- Baglan, I.; Kanca, F.; Mishra, V.N. Fourier method for an existence of quasilinear inverse pseudo-parabolic equation. Iran. J. Math. Sci. Inform. 2024, 19, 193–209. [Google Scholar] [CrossRef]
- Serikbaev, D. Inverse problem for fractional order pseudo-parabolic equation with involution. Ufimsk. Mat. Zh. 2020, 12, 122–138. [Google Scholar] [CrossRef]
- Lyubanova, A.S.; Tani, A. An inverse problem for pseudoparabolic equation of filtration: The existence, uniqueness and regularity. Appl. Anal. 2011, 90, 1557–1571. [Google Scholar] [CrossRef]
- Abdollahi, A.N.; Rostamy, D. Identifying an unknown time-dependent boundary source in time-fractional diffusion equation with a non-local boundary condition. J. Comput. Appl. Math. 2019, 355, 3–50. [Google Scholar]
- Dehghang, M. Numerical solution of non-local boundary value problem with Neumann’s boundary conditions. Commun. Numer. Methods Eng. 2003, 19, 1–12. [Google Scholar] [CrossRef]
- Demir, A.; Ozbilge, E. Identification of the unknown boundary condition in a linear parabolic equation. J. Inequal. Appl. 2013, 96, 96. [Google Scholar] [CrossRef]
- Koleva, M.N.; Vulkov, L.G. Numerical reconstruction of time-dependent boundary conditions to 2D heat equation on disjoint rectangles at integral observations. Mathematics 2024, 12, 1499. [Google Scholar] [CrossRef]
- Rundell, W.; Yin, H.-M. A parabolic inverse problem with an unknown boundary condition. J. Differ. Equ. 1990, 86, 234–242. [Google Scholar] [CrossRef]
- Rundell, W.; Xub, X.; Zuo, L. The determination of an unknown boundary condition in a fractional diffusion equation. Appl. Anal. 2013, 92, 1511–1526. [Google Scholar] [CrossRef]
- Vasil’ev, V.I.; Su, L. Numerical method for solving boundary inverse problem for one-dimensional parabolic equation. Math. Model. 2017, 24, 108–117. [Google Scholar] [CrossRef]
- Zheng, G.H.; Wei, T. Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation. J. Comput. Appl. Math. 2010, 233, 2631–2640. [Google Scholar] [CrossRef]
- Kozhanov, I. Inverse problems for determining boundary regimes for some equations of Sobolev type. Vestn. YuUrGU. Ser. Mat. Model. Progr. 2016, 9, 37–45. (In Russian) [Google Scholar] [CrossRef]
- Lyubanova, A.S. An inverse problem for pseudoparabolic equationwith the mixed boundary condition. J. Sib. Fed. Univ. Math. Phys. 2023, 16, 661–672. [Google Scholar]
- Dehghang, M. Saul’yev techniques for solving a parabolic equations with a nonlinear boundary specification. Intern. J. Comput. Math. 2003, 80, 257–265. [Google Scholar] [CrossRef]
- Taki-Eddine, E.; Bouziani, A. Mixed problem with an integral two-space-variables condition for a third-order parabolic equation. Int. J. Anal. Appl. 2016, 12, 98–117. [Google Scholar]
- Samarskii, A.A. The Theory of Difference Schemes; Marcel Dekker: New York, NY, USA, 2001. [Google Scholar]
- Atanasov, A.Z.; Koleva, M.N.; Vulkov, L.G. Inverse problem numerical analysis of forager bee losses in spatial environment without contamination. Symmetry 2023, 15, 2099. [Google Scholar] [CrossRef]
N | ||||||||
---|---|---|---|---|---|---|---|---|
20 | 1.9260 × 10−3 | 6.8559 × 10−4 | 7.0016 × 10−4 | 6.2560 × 10−4 | ||||
40 | 1.0998 × 10−3 | 0.8083 | 2.9158 × 10−4 | 1.2334 | 5.4992 × 10−4 | 0.3485 | 4.1032 × 10−4 | 0.6085 |
80 | 6.7881 × 10−4 | 0.6962 | 1.4217 × 10−4 | 1.0363 | 3.3940 × 10−4 | 0.6962 | 2.3047 × 10−4 | 0.8322 |
160 | 3.7145 × 10−4 | 0.8698 | 7.1236 × 10−5 | 0.9970 | 1.8573 × 10−4 | 0.8698 | 1.2156 × 10−4 | 0.9229 |
320 | 1.9372 × 10−4 | 0.9392 | 3.5774 × 10−5 | 0.9937 | 9.6858 × 10−5 | 0.9392 | 6.2359 × 10−5 | 0.9630 |
640 | 9.8852 × 10−5 | 0.9706 | 1.7926 × 10−5 | 0.9969 | 4.9426 × 10−5 | 0.9706 | 3.1573 × 10−5 | 0.9819 |
N | ||||||||
---|---|---|---|---|---|---|---|---|
20 | 1.9260 × 10−3 | 6.8559 × 10−4 | 6.1249 × 10−4 | 5.4551 × 10−4 | ||||
40 | 1.0998 × 10−3 | 0.8083 | 2.9158 × 10−4 | 1.2334 | 4.2829 × 10−4 | 0.5161 | 3.4838 × 10−4 | 0.6469 |
80 | 6.7881 × 10−4 | 0.6962 | 1.4217 × 10−4 | 1.0363 | 2.6433 × 10−4 | 0.6962 | 1.9420 × 10−4 | 0.8432 |
160 | 3.7145 × 10−4 | 0.8698 | 7.1236 × 10−5 | 0.9970 | 1.4464 × 10−4 | 0.8698 | 1.0214 × 10−4 | 0.9270 |
320 | 1.9372 × 10−4 | 0.9392 | 3.5774 × 10−5 | 0.9937 | 7.5433 × 10−5 | 0.9392 | 5.2332 × 10−5 | 0.9648 |
640 | 9.8852 × 10−5 | 0.9706 | 1.7925 × 10−5 | 0.9969 | 3.8493 × 10−5 | 0.9706 | 2.6481 × 10−5 | 0.9827 |
N | ||||||||
---|---|---|---|---|---|---|---|---|
20 | 1.9260 × 10−3 | 6.8559 × 10−4 | 1.1417 × 10−3 | 9.1968 × 10−4 | ||||
40 | 1.0998 × 10−3 | 0.8083 | 2.9158 × 10−4 | 1.2334 | 6.5394 × 10−4 | 0.8040 | 5.4396 × 10−4 | 0.7576 |
80 | 6.7881 × 10−4 | 0.6962 | 1.4217 × 10−4 | 1.0363 | 3.5819 × 10−4 | 0.8685 | 2.9554 × 10−4 | 0.8801 |
160 | 3.7145 × 10−4 | 0.8698 | 7.1236 × 10−5 | 0.9970 | 1.8780 × 10−4 | 0.9315 | 1.5387 × 10−4 | 0.9416 |
320 | 1.9372 × 10−4 | 0.9392 | 3.5774 × 10−5 | 0.9937 | 9.6171 × 10−5 | 0.9655 | 7.8485 × 10−5 | 0.9713 |
640 | 9.8852 × 10−5 | 0.9706 | 1.7925 × 10−5 | 0.9969 | 4.8662 × 10−5 | 0.9828 | 3.9631 × 10−5 | 0.9858 |
I | ||||
---|---|---|---|---|
10 | 8.0085 × 10−3 | 2.2029 × 10−3 | ||
20 | 1.9952 × 10−3 | 2.0050 | 5.1666 × 10−4 | 2.0921 |
40 | 4.9836 × 10−4 | 2.0012 | 1.2533 × 10−4 | 2.0435 |
80 | 1.2456 × 10−4 | 2.0004 | 3.0875 × 10−5 | 2.0212 |
160 | 3.1069 × 10−5 | 2.0033 | 7.6578 × 10−6 | 2.0115 |
320 | 7.7632 × 10−6 | 2.0008 | 1.9070 × 10−6 | 2.0057 |
TP1 | ||||
0.002 | 2.5199 × 10−3 | 2.9115 × 10−4 | 1.2600 × 10−3 | 4.3896 × 10−4 |
0.03 | 2.8296 × 10−2 | 3.5931 × 10−3 | 1.4148 × 10−2 | 4.1707 × 10−3 |
0.05 | 4.6707 × 10−2 | 5.9746 × 10−3 | 2.3354 × 10−2 | 6.8635 × 10−3 |
0.1 | 9.2736 × 10−2 | 1.1930 × 10−2 | 4.6368 × 10−2 | 1.3599 × 10−2 |
TP2 | ||||
0.002 | 2.5199 × 10−3 | 2.9115 × 10−4 | 9.8127 × 10−4 | 3.6082 × 10−4 |
0.03 | 2.8296 × 10−2 | 3.5931 × 10−3 | 1.1018 × 10−2 | 3.5048 × 10−3 |
0.05 | 4.6707 × 10−2 | 5.9746 × 10−3 | 1.8188 × 10−2 | 5.7771 × 10−3 |
0.1 | 9.2736 × 10−2 | 1.1930 × 10−2 | 3.6111 × 10−2 | 1.1461 × 10−2 |
TP3 | ||||
0.002 | 2.5199 × 10−3 | 2.9115 × 10−4 | 9.8127 × 10−4 | 4.9846 × 10−4 |
0.03 | 2.8296 × 10−2 | 3.5931 × 10−3 | 1.1018 × 10−2 | 5.2720 × 10−3 |
0.05 | 4.6707 × 10−2 | 5.9746 × 10−3 | 1.8188 × 10−2 | 8.7391 × 10−3 |
0.1 | 9.2736 × 10−2 | 1.1930 × 10−2 | 3.6111 × 10−2 | 1.7412 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koleva, M.N.; Vulkov, L.G. Numerical Determination of a Time-Dependent Boundary Condition for a Pseudoparabolic Equation from Integral Observation. Computation 2024, 12, 243. https://doi.org/10.3390/computation12120243
Koleva MN, Vulkov LG. Numerical Determination of a Time-Dependent Boundary Condition for a Pseudoparabolic Equation from Integral Observation. Computation. 2024; 12(12):243. https://doi.org/10.3390/computation12120243
Chicago/Turabian StyleKoleva, Miglena N., and Lubin G. Vulkov. 2024. "Numerical Determination of a Time-Dependent Boundary Condition for a Pseudoparabolic Equation from Integral Observation" Computation 12, no. 12: 243. https://doi.org/10.3390/computation12120243
APA StyleKoleva, M. N., & Vulkov, L. G. (2024). Numerical Determination of a Time-Dependent Boundary Condition for a Pseudoparabolic Equation from Integral Observation. Computation, 12(12), 243. https://doi.org/10.3390/computation12120243