Computational Methods in the Drug Delivery of Carbon Nanocarriers onto Several Compounds in Sarraceniaceae Medicinal Plant as Monkeypox Therapy
Abstract
:1. Introduction
2. Theoretical Frameworks and Computational Methods
3. Results and Discussion
3.1. Nuclear Magnetic Resonance Data
3.2. Charge Transfer
3.3. Infrared Spectra Analysis
3.4. HOMO and LUMO Analysis
3.5. UV-VIS Spectroscopies
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petersen, B.W.; Damon, I.K. Smallpox, monkeypox and other poxvirus infections. In Goldman-Cecil Medicine, 26th ed.; Lee, G., Andrew, I.S., Eds.; Elsevier: Philadelphia, PA, USA, 2020; Volume 2, pp. 2180–2183. ISBN 978-0-323-53266-2. [Google Scholar]
- Sutcliffe, C.G.; Rimone, A.W.; Moss, W.J. Poxviruses. In Hunter’s Tropical Medicine and Emerging Infectious Diseases E-Book, 10th ed.; Ryan, E.T., Hill, D.R., Solomon, T., Aronson, N., Endy, T.P., Eds.; Elsevier: Edinburgh, UK, 2020; pp. 272–277. ISBN 978-0-323-55512-8. [Google Scholar]
- Harris, E. What to Know About Monkeypox. JAMA 2022, 327, 2278–2279. [Google Scholar] [CrossRef] [PubMed]
- Simpson, K.; Heymann, D.; Brown, C.S.; Edmunds, W.J.; Elsgaard, J.; Fine, P.; Hochrein, H.; Hoff, N.A.; Green, A.; Ihekweazu, C.; et al. Human monkeypox—After 40 years, an unintended consequence of smallpox eradication. Vaccine 2020, 38, 5077–5081. [Google Scholar] [CrossRef] [PubMed]
- Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Negl. Trop. Dis. 2022, 16, e0010141. [Google Scholar] [CrossRef]
- Minasov, G.; Inniss, N.L.; Shuvalova, L.; Anderson, W.F.; Satchell, K.J.F. Structure of the Monkeypox virus profilin-like protein A42R reveals potential functional differences from cellular profilins. Acta Crystallogr. F Struct. Biol. Commun. 2022, 78, 371–377. [Google Scholar] [CrossRef]
- Barlow, G.; Irving, W.L.; Moss, P.J. Infectious disease. In Kumar and Clark’s Clinical Medicine, 10th ed.; Feather, A., Randall, D., Waterhouse, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; p. 517. ISBN 978-0-7020-7870-5. [Google Scholar]
- Hutin, Y.J.; Williams, R.J.; Malfait, P.; Pebody, R.; Loparev, V.N.; Ropp, S.L.; Rodriguez, M.; Knight, J.C.; Tshioko, F.K.; Khan, A.S.; et al. Outbreak of human monkeypox, Democratic Republic of Congo, 1996 to 1997. Emerg. Infect. Dis. 2001, 7, 434–438. [Google Scholar] [CrossRef]
- Arndt, W.; Mitnik, C.; Denzler, K.L.; White, S.; Waters, R.; Jacobs, B.L.; Rochon, Y.; Olson, V.A.; Damon, I.K.; Langland, J.O. In Vitro Characterization of a Nineteenth-Century Therapy for Smallpox. PLoS ONE 2012, 7, e32610. [Google Scholar] [CrossRef]
- Nadar, S.; Khan, T.; Omri, A. Reemergence of monkeypox: Prevention and management. Expert Rev. Anti-Infect. Ther. 2022, 20, 1425–1433. [Google Scholar] [CrossRef]
- Abubakar, I.B.; Kankara, S.S.; Malami, I.; Danjuma, J.B.; Muhammad, Y.Z.; Yahaya, H.; Singh, D.; Usman, U.J.; Ukwuani-Kwaja, A.N.; Muhammad, A.; et al. Traditional medicinal plants used for treating emerging and re-emerging viral diseases in northern Nigeria. Eur. J. Integr. Med. 2022, 49, 102094. [Google Scholar] [CrossRef]
- Millspaugh, C.F. American Medicinal Plants: An Illustrated and Descriptive Guide to Plants Indigenous to and Naturalized in the United States Which Are Used in Medicine (Illustrated ed.); Courier Corporation: Chelmsford, MA, USA, 1892; p. 76. ISBN 9780486230344. [Google Scholar]
- Mollaamin, F.; Monajjemi, M. Thermodynamic research on the inhibitors of coronavirus through drug delivery method. J. Chil. Chem. Soc. 2021, 66, 5195–5205. [Google Scholar] [CrossRef]
- Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2012, 2, 2–11. [Google Scholar] [CrossRef]
- Monajjemi, M.; Shahriari, S. Fatemeh Mollaamin, Evaluation of Coronavirus Families & Covid-19 Proteins: Molecular Modeling Study. Biointerface Res. Appl. Chem. 2020, 10, 6039–6057. [Google Scholar] [CrossRef]
- Mollaamin, F. On the behavior of boron nitride Nanotube-Flavin adenine Dinucleotide interaction ion implantation order to design Biofuel cells. J. Comput. Theor. Nanosci. 2014, 11, 2017–2022. [Google Scholar] [CrossRef]
- Monajjemi, M.; Honaparvar, B.; Khalili Hadad, B.; Ilkhani, A.; Mollaamin, F. Thermo-Chemical Investigation and NBO Analysis of Some anxileotic as Nano- Drugs. Afr. J. Pharm. Pharmacol. 2010, 4, 521–529. [Google Scholar]
- Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019, 4, 33. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Harmonic Linear Combination and Normal Mode Analysis of Semiconductor Nanotubes Vibrations. J. Comput. Theor. Nanosci 2015, 12, 1030–1039. [Google Scholar] [CrossRef]
- Khaleghian, M.; Zahmatkesh, M.; Mollaamin, F.; Monajjemi, M. Investigation of Solvent Effects on Armchair Single-Walled Carbon Nanotubes: A QM/MD Study. Fuller. Nanotub. Carbon Nanostructures 2011, 19, 251–261. [Google Scholar] [CrossRef]
- Ghalandari, B.; Monajjemi, M.; Mollaamin, F. Theoretical Investigation of Carbon Nanotube Binding to DNA in View of Drug Delivery. J. Comput. Theor. Nanosci. 2011, 8, 1212–1219. [Google Scholar] [CrossRef]
- Khalili Hadad, B.; Mollaamin, F.; Monajjemi, M. Biophysical chemistry of macrocycles for drug delivery: A theoretical study. Russ. Chem. Bull. 2011, 60, 238–241. [Google Scholar] [CrossRef]
- Sarasia, E.M.; Afsharnezhad, S.; Honarparvar, B.; Mollaamin, F.; Monajjemi, M. Theoretical study of solvent effect on NMR shielding tensors of luciferin derivatives. Phys. Chem. Liquids 2011, 49, 561–571. [Google Scholar] [CrossRef]
- Mollaamin, F. Physicochemical Investigation of Anti-COVID19 Drugs Using Several Medicinal Plants. J. Chil. Chem. Soc. 2022, 67, 5537–5546. [Google Scholar] [CrossRef]
- Mahdavian, L.; Monajjemi, M. Alcohol sensors based on SWNT as chemical sensors: Monte Carlo and Langevin dynamics simulation. Microelectron. J. 2010, 41, 142–149. [Google Scholar] [CrossRef]
- Monajjemi, M.; Baheri, H.; Mollaamin, F. A percolation model for carbon nanotube-polymer composites using the Mandelbrot-Given. J. Struct. Chem. 2011, 52, 54–59. [Google Scholar] [CrossRef]
- Tahan, A.; Mollaamin, F.; Monajjemi, M. Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy. Russ. J. Phys. Chem. A 2009, 83, 587–597. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2000; Volume 3–64, pp. 93–104. [Google Scholar]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Bakhshi, K.; Mollaamin, F.; Monajjemi, M. Exchange and correlation effect of hydrogen chemisorption on nano V(100) surface: A DFT study by generalized gradient approximation (GGA). J. Comput. Theor. Nanosci. 2011, 8, 763–768. [Google Scholar] [CrossRef]
- Monajjemi, M.; Khaleghian, M.; Tadayonpour, N.; Mollaamin, F. The effect of different solvents and temperatures on stability of single-walled carbon nanotube: A QM/MD study. Int. J. Nanosci. 2010, 9, 517–529. [Google Scholar] [CrossRef]
- Cramer, C.J.; Truhlar, D.G. PM3-SM3: A general parameterization for including aqueous solvation effects in the PM3 molecular orbital model. J. Comp. Chem. 1992, 13, 1089–1097. [Google Scholar] [CrossRef]
- Liotard, D.A.; Hawkins, G.D.; Lynch, G.C.; Cramer, C.J.; Truhlar, D.G. Improved methods for semiempirical solvation models. J. Comp. Chem. 1995, 16, 422–440. [Google Scholar] [CrossRef]
- Chambers, C.C.; Hawkins, G.D.; Cramer, C.J.; Truhlar, D.G. Model for aqueous solvation based on class IV atomic charges and first solvation shell effects. J. Phys. Chem. 1996, 100, 16385–16398. [Google Scholar] [CrossRef]
- Giesen, D.J.; Gu, M.Z.; Cramer, C.J.; Truhlar, D.G. A Universal Organic Solvation Model. J. Org. Chem. 1996, 61, 8720–8721. [Google Scholar] [CrossRef] [PubMed]
- Onsager, L.J. Electric Moments of Molecules in Liquids. J. Am. Chem. Soc. 1936, 58, 1486–1493. [Google Scholar] [CrossRef]
- Tomasi, J. Cavity and reaction field: “Robust” concepts. Perspective on “Electric moments of molecules in liquids”. Theor. Chem. Acc. 2000, 103, 196–199. [Google Scholar] [CrossRef]
- Zadeh, M.A.A.; Lari, H.; Kharghanian, L.; Balali, E.; Khadivi, R.; Yahyaei, H.; Mollaamin, F.; Monajjemi, M. Density functional theory study and anti-cancer properties of shyshaq plant: In view point of nano biotechnology. J. Comput. Theor. Nanosci. 2015, 12, 4358–4367. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M.; Salemi, S.; Baei, M.T. A Dielectric Effect on Normal Mode Analysis and Symmetry of BNNT Nanotube. Fuller. Nanotub. Carbon Nanostructures 2011, 19, 182–196. [Google Scholar] [CrossRef]
- Mollaamin, F.; Ilkhani, A.; Sakhaei, N.; Bonsakhteh, B.; Faridchehr, A.; Tohidi, S.; Monajjemi, M.; Fatemeh, M.; Alireza, I.; Neda, S.; et al. Thermodynamic and solvent effect on dynamic structures of nano bilayer-cell membrane: Hydrogen bonding study. J. Comput. Theor. Nanosci. 2015, 12, 3148–3154. [Google Scholar] [CrossRef]
- Mollaamin, F. Chemotherapy Study of alkaloids through Theoretical Quantum Methods. Moroc. J. Chemistry. 2020, 8, 400–411. [Google Scholar] [CrossRef]
- Fry, R.A.; Kwon, K.D.; Komarneni, S.; Kubicki, J.D.; Mueller, K.T. Solid-State NMR and Computational Chemistry Study of Mononucleotides Adsorbed to Alumina. Langmuir 2006, 22, 9281–9286. [Google Scholar] [CrossRef]
- Monajjemi, M.; Noei, M.; Mollaamin, F. Design of fMet-tRNA and Calculation of its Bonding Properties by Quantum Mechanics. Nucleosides Nucleotides Nucleic Acids 2010, 29, 676–683. [Google Scholar] [CrossRef]
- Monajjemi, M.; Robert, W.J.; Boggs, J.E. NMR contour maps as a new parameter of carboxyl’s OH groups in amino acids recognition: A reason of tRNA-amino acid conjugation. Chem. Phys. 2014, 433, 1–11. [Google Scholar] [CrossRef]
- Aihara, J. Reduced HOMO−LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. A 1999, 103, 7487–7495. [Google Scholar] [CrossRef]
- Kohn, W.; Becke, A.D.; Parr, R.G. Density Functional Theory of Electronic Structure. J. Phys. Chem. 1996, 100, 12974–12980. [Google Scholar] [CrossRef]
- Parr, R.G.; Pearson, R.G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. [Google Scholar] [CrossRef]
- Politzer, P.; Abu-Awwad, F. A comparative analysis of Hartree-Fock and Kohn-Sham orbital energies. Theor. Chem. Acc. 1998, 99, 83–87. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C.; Morrill, T.C. Spectrometric Identification of Organic Compounds, 5th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1981. [Google Scholar]
- Mollaamin, F. Features of Parametric Point Nuclear Magnetic Resonance of Metals Implantation on Boron Nitride Nanotube by Density Functional Theory/Electron Paramagnetic Resonance. J. Comput. Theor. Nanosci. 2014, 11, 2393–2398. [Google Scholar] [CrossRef]
(+)-catechin | ||||||||||
ppm | C9 | O10 | C16 | O17 | C18 | O19 | H29 | H32 | H33 | |
σ11 | 59.2865 | 290.7057 | 83.3679 | 294.7889 | 74.8748 | 314.0021 | 22.0139 | 18.3994 | 22.5452 | |
σ22 | 95.0440 | 290.7057 | 96.1147 | 319.9473 | 102.1597 | 334.3497 | 29.1676 | 30.9900 | 29.3964 | |
σ33 | 202.1101 | 324.1978 | 204.8543 | 371.6628 | 204.9966 | 339.3341 | 40.1023 | 39.0397 | 40.7560 | |
σiso | 118.8135 | 312.0269 | 128.1123 | 328.7997 | 127.3437 | 329.2287 | 30.4279 | 29.4764 | 30.8992 | |
σaniso | 124.9449 | 18.2563 | 115.1130 | 64.2947 | 116.4793 | 15.1582 | 14.5116 | 14.3450 | 14.7852 | |
Q | 0.1421 | −0.2901 | 0.116237 | −0.2961 | 0.098471 | −0.3090 | 0.2138 | 0.2258 | 0.2213 | |
betulinic acid | ||||||||||
ppm | C1 | C15 | O16 | O32 | O33 | H55 | H56 | H81 | ||
σ11 | −15.6362 | 169.1082 | 328.6384 | −503.6711 | 138.8698 | 28.0314 | 24.8297 | 21.7177 | ||
σ22 | 154.9603 | 178.9003 | 337.9158 | −252.2589 | 310.1232 | 29.9588 | 31.6255 | 24.5804 | ||
σ33 | 164.7082 | 209.4747 | 421.9830 | 450.9700 | 335.3043 | 37.4969 | 49.6449 | 38.4823 | ||
σiso | 101.3441 | 185.8277 | 362.8457 | −101.6533 | 261.4324 | 31.8290 | 35.3667 | 28.2601 | ||
σaniso | 95.0462 | 35.4704 | 88.7059 | 828.9350 | 110.8078 | 8.5018 | 21.4173 | 15.3332 | ||
Q | 0.3171 | 0.0872 | −0.3262 | −0.2893 | −0.3130 | 0.0317 | 0.1843 | 0.2175 | ||
ursolic acid | ||||||||||
ppm | C1 | C2 | O3 | O32 | O33 | H34 | H35 | H81 | ||
σ11 | −14.8985 | 170.5948 | 339.4528 | −466.2527 | 149.8814 | 27.2523 | 24.1463 | 22.1181 | ||
σ22 | 159.4348 | 178.9689 | 347.9330 | −229.8480 | 312.0712 | 28.4278 | 31.8205 | 24.5591 | ||
σ33 | 163.0061 | 206.2026 | 420.4447 | 448.6102 | 332.2916 | 39.6026 | 48.3531 | 38.8056 | ||
σiso | 102.5141 | 185.2554 | 369.2768 | −82.4968 | 264.7481 | 31.7609 | 34.7733 | 28.4942 | ||
σaniso | 90.7380 | 31.4207 | 76.7519 | 796.6605 | 101.3153 | 11.7626 | 20.3697 | 15.4670 | ||
Q | 0.3222 | 0.0873 | −0.3302 | −0.2924 | −0.3153 | 0.0342 | 0.1880 | 0.2168 | ||
quercetin-3-O-galactoside | ||||||||||
ppm | C9 | O10 | C16 | O17 | C18 | O19 | H36 | H39 | H40 | |
σ11 | 54.5792 | 281.0196 | 76.6664 | 302.9608 | 83.8594 | 322.1996 | 21.5989 | 18.9010 | 22.7514 | |
σ22 | 92.8624 | 322.3705 | 97.9617 | 319.2503 | 118.3675 | 329.4509 | 29.5876 | 30.5873 | 29.1195 | |
σ33 | 201.6165 | 322.7628 | 207.5362 | 372.0312 | 203.9020 | 342.7070 | 38.8885 | 38.9020 | 40.9307 | |
σiso | 116.3527 | 308.7176 | 127.3881 | 331.4141 | 135.3763 | 331.4525 | 30.0250 | 29.4634 | 30.9339 | |
σaniso | 127.8957 | 21.0677 | 120.2221 | 60.9256 | 135.3763 | 16.8818 | 13.2953 | 14.1579 | 14.9952 | |
Q | 0.1521 | −0.2868 | 0.1158 | −0.2958 | 0.0999 | −0.3038 | 0.2187 | 0.2247 | 0.2208 | |
luteolin-7-O-glucoside | ||||||||||
ppm | C15 | O16 | C17 | O18 | C23 | O24 | C25 | O26 | H38 | H39 |
σ11 | 80.5725 | 298.6345 | 71.3881 | 308.1253 | 178.5325 | 345.1945 | 175.2961 | 349.2208 | 18.1208 | 22.3625 |
σ22 | 99.5240 | 320.6211 | 99.9390 | 331.7684 | 185.8453 | 355.1242 | 183.8870 | 360.3805 | 31.1043 | 29.0165 |
σ33 | 203.2873 | 369.2133 | 204.0323 | 340.0012 | 214.9455 | 417.7007 | 210.8215 | 419.9940 | 39.1626 | 40.6486 |
σiso | 127.7946 | 329.4896 | 125.1198 | 326.6316 | 193.1078 | 372.6731 | 190.0015 | 376.5317 | 29.4626 | 30.6759 |
σaniso | 113.2391 | 59.5854 | 118.3688 | 20.0544 | 32.7566 | 67.5413 | 31.2300 | 65.1933 | 14.5501 | 14.9591 |
Q | 0.1113 | −0.2977 | 0.1043 | −0.3065 | 0.0689 | −0.3163 | 0.0671 | −0.3289 | 0.2241 | 0.2229 |
myricetin | ||||||||||
ppm | C10 | O11 | C12 | C19 | O20 | O22 | H27 | H28 | H31 | H32 |
σ11 | 53.5046 | 279.3475 | 99.6682 | 97.7369 | 313.5489 | 316.0992 | 21.6415 | 19.8020 | 18.5542 | 22.3030 |
σ22 | 92.4576 | 322.1245 | 142.5628 | 101.4764 | 329.1589 | 334.0617 | 29.3435 | 30.2446 | 31.2943 | 29.8787 |
σ33 | 201.7495 | 322.9617 | 223.6607 | 205.2742 | 387.8727 | 337.0559 | 38.9144 | 31.4497 | 39.4524 | 40.5172 |
σiso | 115.9039 | 308.1446 | 155.2972 | 134.8292 | 343.5269 | 329.0723 | 29.9665 | 27.1654 | 29.7670 | 30.8996 |
σaniso | 128.7684 | 22.2257 | 102.5452 | 105.6675 | 66.5188 | 11.9754 | 13.4219 | 6.4264 | 14.5282 | 14.4263 |
Q | 0.1544 | −0.2859 | −0.1240 | 0.0836 | −0.3111 | -0.3086 | 0.2200 | 0.0580 | 0.2343 | 0.2219 |
Compounds | ∆G × 10−3 | ∆H × 10−3 | ∆S | Dipole Moment (Debye) |
---|---|---|---|---|
(+)-catechin | −634.993 | −634.958 | 117.270 | 2.3245 |
betulinic acid | −860.291 | −860.242 | 161.600 | 1.5023 |
ursolic acid | −860.275 | −860.229 | 151.479 | 1.4017 |
quercetin-3-O-galactoside | −1055.740 | −1055.697 | 142.287 | 5.4546 |
luteolin-7-O-glucoside | −1009.555 | −1009.514 | 138.448 | 5.4520 |
myricetin | −726.155 | −957.555 | 112.043 | 2.2361 |
Compounds | ELUMO (ev) | EHOMO (ev) | ∆E = ELUMO – EHOMO (ev) |
---|---|---|---|
(+)-catechin | −2.1960 | −6.7125 | 4.5165 |
betulinic acid | −3.5556 | −7.6586 | 4.103 |
ursolic acid | −3.6444 | −7.0303 | 3.3859 |
quercetin-3-O-galactoside | −1.0222 | −5.4036 | 4.3814 |
luteolin-7-O-glucoside | −1.8610 | −5.7944 | 4.7722 |
myricetin | −1.7644 | −5.5318 | 3.7674 |
Compound Quantities (ev) | (+)-catechin | Betulinic Acid | Ursolic Acid | quercetin-3-O-galactoside | luteolin-7-O-glucoside | Myricetin |
---|---|---|---|---|---|---|
µ | −4.45425 | −5.6071 | −5.33735 | −3.2129 | −3.8277 | −3.6481 |
χ | 4.45425 | 5.6071 | 5.33735 | 3.2129 | 3.8277 | 3.6481 |
η | 2.25825 | 2.0515 | 1.69295 | 2.1907 | 1.9667 | 1.8837 |
ζ | 0.2214 | 0.2437 | 0.2953 | 0.2282 | 0.2542 | 0.2654 |
ψ | 4.3928 | 7.6625 | 8.4135 | 2.3560 | 3.7248 | 3.5326 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollaamin, F. Computational Methods in the Drug Delivery of Carbon Nanocarriers onto Several Compounds in Sarraceniaceae Medicinal Plant as Monkeypox Therapy. Computation 2023, 11, 84. https://doi.org/10.3390/computation11040084
Mollaamin F. Computational Methods in the Drug Delivery of Carbon Nanocarriers onto Several Compounds in Sarraceniaceae Medicinal Plant as Monkeypox Therapy. Computation. 2023; 11(4):84. https://doi.org/10.3390/computation11040084
Chicago/Turabian StyleMollaamin, Fatemeh. 2023. "Computational Methods in the Drug Delivery of Carbon Nanocarriers onto Several Compounds in Sarraceniaceae Medicinal Plant as Monkeypox Therapy" Computation 11, no. 4: 84. https://doi.org/10.3390/computation11040084
APA StyleMollaamin, F. (2023). Computational Methods in the Drug Delivery of Carbon Nanocarriers onto Several Compounds in Sarraceniaceae Medicinal Plant as Monkeypox Therapy. Computation, 11(4), 84. https://doi.org/10.3390/computation11040084